Conception, développement, déploiement et exploitation de vos plateformes, applications et données.
Contactez-nous !Ce soir, il y a la 8ème édition du Paris Time Series Meetup sur AWS TimeStream.
scp file destination:/path/to/file ? La commande scp est victime de nombreuses failles. Du coup, elle va être dépréciée. Néanmoins une initiative vise à maintenir uen commande scp mais se fondant sur sftp et son modèle de sécurité.Pour ceux sous Fedora et utilisant podman en alternative au binaire docker, pour se connecter à la registry google (via):
gcloud auth print-access-token | podman login -u oauth2accesstoken --password-stdin gcr.io
Des nouvelles du Paris Time Series Meetup : l’éditions 6 sur TimescaleDB et l’édition 7 sur QuestDB
include et extends sont déjà sympathiques, les anchors ont l’air de faire des choses intéressantes aussi !Sur la base des informations disponibles pour le moment :
Pour les moins bons côtés :
Une solution a priori très orienté pour du monitoring et qui semble souffir des mêmes travers qu’InfluxDB avec InfluxQL et pourtant en passe d’être résolus avec Flux.
On devrait en parler plus en détail dans une prochaine édition du Paris Time Series Meetup avec des personnes de chez AWS ;-)
Editeur d’une plateforme data, la société cherche à se faire accompagner et confier le role de Lead Platform à une personne en mesure d’industrialier et d’automatiser la plateforme, son déploiement et son exploitation mais aussi d’améliorer les pratiques de développement de l’équipe. Une contribution directe au produit est également envisagé.
En tant que Lead Platform :
Je ne peux résister à mentionner la sortie de l’épisode 100 du BigDataHebdo, podcast où j’ai le plaisir de contribuer. Pour ce numéro spécial (épisode 100 et 6 ans du podcast), nous avons fait appel aux membres de la communauté pour partager avec nous leur base de données favorite, la technologie qui les a le plus impressionée durant ces 6 dernières années et celle qu’ils voient comme majeure pour les 6 prochaines années. Allez l’écouter !
influx stacks pour faire du CRUD sur des groupes de ressources InfluxDB (dashboard, labels, tasks, etc).Depuis que j’ai migré des sites sous kubernetes, j’avais perdu l’automatisation du déploiement de mes conteneurs. Pour ce site, je modifiais donc le site et une fois le git push realisé, j’attendais que Gitlab-CI crée mon conteneur. Je récupérai alors le tag du conteneur que je mettais dans le dépôt git où je stocke mes fichiers de configuration pour kubernetes. Une fois le tag mis à jour, je pouvais procéder au déploiement de mon conteneur. Il était temps d’améliorer ce workflow.
Gitlab propose depuis un moment une intégration avec kubernetes mais je lui trouve quelques inconvénients au regard de mes besoins :
Mon besoin pourrait se résumer à pouvoir interagir avec mon cluster au travers de kubectl et de pouvoir y déployer la nouvelle version du conteneur que je viens de créer. Cela suppose alors d’avoir 3 choses :
kubeconfig pour m’authentifier auprès du cluster et interagir avec,Utilisant le service managé d’OVH, je n’ai pas accès à tous les certificats du cluster permettant de créer de nouveaux comptes utilisateurs. Par ailleurs, pour les intégrations comme Gitlab, il est recommandé d’utiliser des Service Accounts. C’est ce que nous allons faire.
En plus du Service Account, il nous faut donner un rôle à notre compte pour qu’il puisse réaliser des actions sur le cluster. Par simplicité pour ce billet, je vais lui donner les droits d’admin au sein d’un namespace. Le compte de service pourra alors faire ce qu’il veut mais uniquement au sein du namespace en question. En cas de fuite du compte, les dégats potentiels sont donc moindres qu’avec un compter qui est admin global du cluster. Le rôle admin existe déjà sous kubernetes, il s’agit du ClusteRole admin mais qui est restreint à un namespace via le RoleBinding.
Créons le fichier gitlab-integtration.yml avec ces éléments :
---
apiVersion: v1
kind: ServiceAccount
metadata:
  name: gitlab-example
  namespace: example
---
apiVersion: rbac.authorization.k8s.io/v1beta1
kind: RoleBinding
metadata:
  name: gitlab-admin
roleRef:
  apiGroup: rbac.authorization.k8s.io
  kind: ClusterRole
  name: admin
subjects:
- kind: ServiceAccount
  name: gitlab-example
  namespace: example
Déployons notre configuration sur le cluster :
# Apply yml file on the cluster
kubectl apply -f gitlab-integration.yml
serviceaccount/gitlab-example created
rolebinding.rbac.authorization.k8s.io/gitlab-admin created
Pour alimenter notre fichier kubeconfig, il nous faut récupérer le token :
# Get secret's name from service account
SECRETNAME=`kubectl -n example get sa/gitlab-example -o jsonpath='{.secrets[0].name}'`
# Get token from secret, encoded in base64
TOKEN=`kubectl -n example get secret $SECRETNAME -o jsonpath='{.data.token}'`
# Decode token
CLEAR_TOKEN=`echo $TOKEN |base64 --decode`
En prenant votre fichier kubeconfig de référence, vous pouvez alors créer une copie sous le nom kubeconfig-gitlab-example.yml et l’éditer de la façon suivante :
apiVersion: v1
clusters:
- cluster:
    certificate-authority-data: <Existing certificate in a base64 format from your original kubeconfig file>
    server: <url of your k8s http endpoint like https://localhost:6443/ >
  name: kubernetes # adjust your cluster name
contexts:
- context:
    cluster: kubernetes # adjust your cluster name
    namespace: example # adjust your namespace
    user: gitlab-example # adujust your user
  name: kubernetes-ovh # adujust your context
current-context: kubernetes-ovh # adujust your context
kind: Config
preferences: {}
users:
- name: gitlab-example # adujust your user
  user:
    token: <Content of the CLEAR_TOKEN variable>
Vous pouvez tester son bon fonctionnement via :
# Fetch example resources if any:
kubectl --kubeconfig=./kubeconfig-gitlab-example.yml get all
...
# Check you can't access other namespaces information, like kube-system:
kubectl --kubeconfig=./kubeconfig-gitlab-example.yml get all -n kube-system
Error from server (Forbidden): pods is forbidden: User "system:serviceaccount:example:gitlab-example" cannot list resource "pods" in API group "" in the namespace "kube-system"
Error from server (Forbidden): replicationcontrollers is forbidden: User "system:serviceaccount:example:gitlab-example" cannot list resource "replicationcontrollers" in API group "" in the namespace "kube-system"
Error from server (Forbidden): services is forbidden: User "system:serviceaccount:example:gitlab-example" cannot list resource "services" in API group "" in the namespace "kube-system"
Error from server (Forbidden): daemonsets.apps is forbidden: User "system:serviceaccount:example:gitlab-example" cannot list resource "daemonsets" in API group "apps" in the namespace "kube-system"
Error from server (Forbidden): deployments.apps is forbidden: User "system:serviceaccount:example:gitlab-example" cannot list resource "deployments" in API group "apps" in the namespace "kube-system"
Error from server (Forbidden): replicasets.apps is forbidden: User "system:serviceaccount:example:gitlab-example" cannot list resource "replicasets" in API group "apps" in the namespace "kube-system"
Error from server (Forbidden): statefulsets.apps is forbidden: User "system:serviceaccount:example:gitlab-example" cannot list resource "statefulsets" in API group "apps" in the namespace "kube-system"
Error from server (Forbidden): horizontalpodautoscalers.autoscaling is forbidden: User "system:serviceaccount:example:gitlab-example" cannot list resource "horizontalpodautoscalers" in API group "autoscaling" in the namespace "kube-system"
Error from server (Forbidden): jobs.batch is forbidden: User "system:serviceaccount:example:gitlab-example" cannot list resource "jobs" in API group "batch" in the namespace "kube-system"
Error from server (Forbidden): cronjobs.batch is forbidden: User "system:serviceaccount:example:gitlab-example" cannot list resource "cronjobs" in API group "batch" in the namespace "kube-system"
Gitlab permet de stocker des variables. Dans le cas d’un fichier kubeconfig, on va vouloir ne jamais afficher son contenu dans les logs ou autre. Pour cela il est possible de masquer vos variables en respectant quelques contraintes et notamment que la valeur de la variable tienne sur une seule ligne.
Nous allons donc encoder le fichier en base64 et rajouter un argument pour que tout soit sur une seule ligne (et non pas sur plusieurs lignes par défaut):
# create a one line base64 version of kubeconfig file
cat kubeconfig-gitlab-example.yml | base64 -w 0
Copier le contenu obtenu dans une variable que nous appelerons KUBECONFIG et dont on cochera bien la case “Mask variable”. Une fois la variable sauvée, vous avez ceci :

Soit le fichier .gitlab-ci.yml suivant:
---
stages:
  - publish
  - image
  - deploy
publish:
  image:  $CI_REGISTRY/nsteinmetz/hugo:latest
  artifacts:
    paths:
      - public
    expire_in: 1 day
  only:
    - master
    - web
  script:
    - hugo
  stage: publish
  tags:
    - go
docker:
  stage: image
  image: docker:stable
  services:
  - docker:dind
  variables:
    DOCKER_HOST: tcp://docker:2375
    DOCKER_DRIVER: overlay2
    RELEASE_IMAGE: $CI_REGISTRY_IMAGE:$CI_COMMIT_SHORT_SHA-$CI_PIPELINE_ID-$CI_JOB_ID
  before_script:
    - docker login -u gitlab-ci-token -p $CI_JOB_TOKEN $CI_REGISTRY
  script:
    - echo "IMAGE=${RELEASE_IMAGE}" >> docker.env
    - docker build --pull -t $RELEASE_IMAGE .
    - docker push $RELEASE_IMAGE
  when: on_success
  tags:
    - go
  artifacts:
    reports:
      dotenv: docker.env
kube:
  stage: deploy
  script:
    - echo $KUBECONFIG | base64 --decode > kubeconfig
    - export KUBECONFIG=`pwd`/kubeconfig
    - sed -i -e "s|IMAGE|${IMAGE}|g" deployment.yml
    - kubectl apply -f deployment.yml
  needs:
    - job: docker
      artifacts: true
  when: on_success
  tags:
    - shell
Petite explication rapide :
publish va générer la version html du site et la stocker sous la forme d’un artefact qui sera passé aux jobs suivants,docker va créer l’image en mettant l’artefact du job précédent dans un conteneur nginx et le publier dans la registry gitlab avec le nom suivant gitlab.registry/group/project:<short commit>-<pipeline id>-<job id>kube va récupérer le contenu de la variable KUBECONFIG, le décoder et créer un fichier kubeconfig. On initialise la variable d’environnement KUBECONFIG pour que kubectl puisse l’utiliser. On met à jour la référence de l’image docker obtenue précédemment dans le fichier deployment.yml qui sert de modèle de déploiement. On applique le fichier obtenu sur le cluster kubernetes pour mettre à jour le déploiement.Le point d’attention ici est que le passage de la variable RELEASE_IMAGE se fait via un dotenv qui est créé sous la forme d’un artefact à l’étape docker et est donc disponible à l’étape kube. Cela devrait être automatique mais j’ai ajouté une dépendance explicite via la directive needs. Lors de l’étape kube, le contenu du fichier docker.env est disponible sous la forme de variables d’environnement. On peut alors faire la substitution de notre placeholder par la valeur voulue dans deployment.yml.
Tout ce mécanisme est expliqué dnas la doc des variables gitlab et sur les variables d’environnement héritées. Attention, il vous faut Gitlab 13.0+ pour avoir cette fonctionnalité et en plus, il faut préalablement activer ce feature flag.
sudo gitlab-rails console
Feature.enable(:ci_dependency_variables)
En conclusion, nous avons vu comment :
kubeconfig utilisant notre service account dans Gitlab sous la forme d’une variable masquée,Ainsi, toute mise à jour de master conduira à une mise à jour du déploiement associé au sein du cluster kubernetes et ne nécessitera plus d’interventions manuelles comme précédemment. Avec un service account lié à un namespace, on évite aussi de s’exposer inutilement en cas de fuite des identifiants.