Le blog tech de Nicolas Steinmetz (Time Series, IoT, Web, Ops, Data)
CérénIT vient de finaliser la migration pour un de ses clients d’un socle InfluxDB/Chronograf/Kapacitor vers InfluxDB2. Ce billet est l’occasion de revenir sur la partie alerting et de la migration de Kapacitor vers des alertes dans InfluxDB2.
Dans le cadre du socle InfluxDB/Chronograf/Kapacitor, le fonctionnement était le suivant :
Avant d’envisager la migration InfluxDB2, un point de vocabulaire :
Avec la migration InfluxDB2, nous avons voulu maintenir le même mécanisme. Toutefois :
Heureusement, la documentation mentionne la possibilité de faire des “custom checks” et un billet très détaillé intitulé “InfluxDB’s Checks and Notifications System” permet de mieux comprendre ce qu’il est possible de faire et donne quelques exemples de code.
Dès lors, il s’agit de :
Pour se faire, nous allons nous appuyer sur les mécanismes mis à disposition par Influxdata, à savoir les fonctions monitor.check(), monitor.from() et monitor.notify() et les mécanismes induits.
C’est ce que nous allons voir maintenant :
Le cycle de vie d’une alerte est le suivant :
monitor.check()
en définissant les informations d’identification du check, le type de check que l’on utilise (threshold, deadman, custom), les différents seuils dont on a besoin, le message à envoyer au endpoint, les données issues de la requête flux.monitor.check()
va alors stocker l’ensemble de ces données dans un measurement statuses
dans le bucket _monitoring
et il s’arrête là.monitor.from()
prend le relais, regarde s’il y a de nouveaux status depuis sa dernière exécution et en fonction des règles de notifications qui ont été définies, il va passer le relais monitor.notify()
.monitor.notify()
enverra une notification si la règle est validée et il insérera une entrée dans le measurement notifications
du bucket _monitoring
Une première version des alertes ont été implémentées sur cette logique. Des dashboards ont été réalisés pour suivre les status et les notifications. Cela fonctionne, pas de soucis ou presque.
Il se peut qu’il y ait un délai entre le moment où l’insertion issue du monitor.check()
se fait et le moment où le monitor.from()
s’exécute. Si monitor.from()
fait sa requête avant l’insertion de données, alors l’alerte ne sera pas immédiatement levée. Elle sera levée à la prochaine exécution de la task, ce qui peut être problématique dans certains cas. Pour une tâche qui s’exécute toutes les minutes, cela ne se voit pas ou presque. Pour une tâche toutes les 5 minutes, ça commence à se voir.
Une version intermédiare de la task est alors née : une fois le monitor.check()
exécuté, nous faisons appel à monitor.notify()
pour envoyer le message vers le endpoint.
Avantage :
Inconvénients :
notifications
de la même façon que précédemment (d’où les pointillés) vu que les données insérées dans le measurement statuses
n’existent pas encore. On perd la visibilité sur les notifications envoyées (mais on a toujours le suivi des statuts ; nous supposons que si on a le statut, alors on sait si la notification a été envoyée)Une variante non essayée à ce stade : elle consiste à faire cette notification au plus tôt mais de conserver le mécanisme de monitor.from() + monitor.notify()
pour avoir le measurement notifications
correctement mise à jour. A voir si les alertes ne sont pas perturbées par ce double appel à monitor.notify()
. Dans le cas présent, c’est l’application métier qui envoie les alertes après que la task InfluxDB ait appelé son API HTTP. Si chaque monitor.notify()
en vient à lever une alerte, cela est sans impact pour l’utilisateur. En effet, une fois qu’une alerte est levée, elle est considérée comme levée tant qu’elle n’est pas acquittée. Donc même si la task provoque 2 appels, seul le premier lévera l’alerte et la seconde ne fera rien de plus.
Enfin dernière variante (testée) : s’affranchir complètement de monitor.notify()
pour faire directement appel à http.endpoint() et http.post() et faire complètement l’impasse sur le suivi dans notifications
.
Tout est une histoire de compromis.
En conclusion, nous pouvons retenir que :
_monitoring
et les measurements statuses
et notifications
.monitor.check()
et monitor.from()
peuvent conduire à des décalages de levées d’alertesInfluxDB 0SS 2.0 étant sortie, j’ai testé la mise à jour d’une instance 1.8.3 vers 2.0.1 sur une VM Debian 10 à jour.
La documentation pour une mise à jour 1.x vers 2.x est disponible. La vidéo “Path to InfluxDB 2.0: Seamlessly Migrate 1.x Data” reprend cela et va plus loin en présentant bien tous les points à prendre en compte (y compris pour Telegraf, Chronograf et Kapacitor). Je ne rajouterai donc que mes remarques.
Concernant la commande influxd upgrade
:
sudo
pour ne pas avoir de problèmes de permisisons.~/.influxdbV2
. Or je doute que vous vouliez que vos données soient à cet endroit. Je vous invite donc à regarder la documentation de influxd upgrade
pour définir les propriétés --engine-path
et --bolt-path
Exemple:
mkdir -p /srv/influxdb/influxdb2
influxd upgrade --engine-path /srv/influxdb/influxdb2/engine --bolt-path /srv/influxdb/influxdb2/influxd.bolt
config.toml
est généré dans /etc/influxdb/
. Il contient quelques valeurs issues de la migration et des valeurs par défaut. Je l’ai personnalisé de la façon suivante pour tenir compte de mes valeurs :bolt-path = "/srv/influx/influxdb2/influxd.bolt"
engine-path = "/srv/influx/influxdb2/engine"
http-bind-address = "127.0.0.1:8086"
storage-series-id-set-cache-size = 100
influxd
cherchait à initialiser ses fichiers dans /var/lib/influxdb/.influxdbv2
. Ayant noté que le service InfluxDB prennait /etc/default/influxdb
comme fichier d’environnement, j’ai ajouté dans ce fichier :# /etc/default/influxdb
INFLUXD_CONFIG_PATH=/etc/influxdb/config.toml
Dès lors, /etc/influxdb/config.toml
était bien pris en compte et InfluxDB démarrait bien avec mes données.
Une fois InfluxDB 2 démarré, j’ai pu noter avec plaisir :
Je n’ai donc pas d’urgence à migrer la configuration et le paramétrage de ces derniers. Je vais pouvoir le faire progressivement ces prochains jours.
N’utilisant pas Chronograf et Kapacitor, je n’ai pas eu de données à migrer ou d’ajustements à faire à ce niveau là. La vidéo reprend bien les points d’attention et les éventuelles limitations à prendre en compte dans le cadre de la migration.
Finalement, c’est pas mal qu’ils aient réintégrer les endpoints 1.x dans la version 2.0 à ce niveau là ;-)
La 2.0.2 étant sortie pendant ma mise à jour, j’ai poursuivi la mise à jour. Je suis tombé sur ce bug rendant l’écriture de données impossibles. Cela a mis en évidence un bug sur la migration des “retention policies” et sur le fait que j’avais aussi des très vieilles bases InfluxDB. Je n’aurai a priori pas eu ce bug en faisant la migration 1.8.3 vers 2.0.2. En tous cas, une 2.0.3 devrait donc arriver prochainement avec une amélioration du processus de migration faisant suite à ma séance de troubleshooting.
Elle peut se faire très progressivement - si par ex vous utilisez telegraf pour envoyer vos données et Grafana pour la partie dashboarding :
influxdb
à l’output influxdb_v2
sans impacter grafana qui continuera à accéder à vos données en InfluxQLSi vous devez rétablir un accès à vos données via les API 1.x à un bucket nouvellement créé (j’ai profité de la migration pour mettre des buckets clients dans des organisations représentant les clients en question).
# Créer le bucket
influx bucket create --name <BUCKET_NAME> --retention 0 --org <ORGANISATION>
# Récupérer l'ID de bucket via la liste des buckets
influx bucket list
# Créer une DBRP (DataBase Retention Policies) pour le bucket en question - les accès en 1.x se font en mode SELECT * FROM <db_name>.<retention_policies> ...
influx v1 dbrp create --bucket-id=<BUCKET_ID> --db=<BUCKET_NAME> --rp=autogen --default=true
# Créer un utilsateur sans mot de passe pour le moment
influx v1 auth create --username <USER> --read-bucket <BUCKET_ID> --write-bucket <BUCKET_ID> --org <ORGANISATION> --no-password
# Créer un mot de passe au format V1
influx v1 auth set-password --username <USER>
Les utilisateurs migrés depuis la version 1.x sont visibles via influx v1 auth list
.
Le support de Flux dans Grafan existe depuis la version 7.1 mais il n’est pas aussi aisé que celui dans InfluxDB 2.0 OSS. Il y a certes de la complétion au niveau du code ou le support des variables mais pas de capacité d’introspection sur la partie données.
Pour le moment, je procède donc de la façon suivante :
Ex coté InfluxDB 2.0 OSS / Flux :
from(bucket: v.bucket)
|> range(start: v.timeRangeStart, stop: v.timeRangeStop)
|> filter(fn: (r) => r["_measurement"] == "net")
|> filter(fn: (r) => r["_field"] == "bytes_recv" or r["_field"] == "bytes_sent")
|> filter(fn: (r) => r["host"] == v.host)
|> derivative(unit: v.windowPeriod, nonNegative: false)
|> yield(name: "derivative")
La version dans Grafana :
from(bucket: "${bucket}")
|> range(start: v.timeRangeStart, stop: v.timeRangeStop)
|> filter(fn: (r) => r["_measurement"] == "net")
|> filter(fn: (r) => r["_field"] == "bytes_recv" or r["_field"] == "bytes_sent")
|> filter(fn: (r) => r["host"] == "${host}")
|> derivative(unit: v.windowPeriod, nonNegative: false)
|> yield(name: "derivative")
La différence portant sur la gestion des variables v.host
vs "${host}"
et v.bucket
vs "${bucket}"
.
Autre bonne nouvelle, les variables sont supportées dans Grafana ; vous pouvez donc définir les variables comme celles vu juste au-dessus :
Variable bucket
de type “Query” en prenant InfluxDB/Flux comme datasource :
buckets()
|> filter(fn: (r) => r.name !~ /^_/)
|> rename(columns: {name: "_value"})
|> keep(columns: ["_value"])
Variable host
de type “Query” en prenant InfluxDB/Flux comme datasource :
# Provide list of hosts
import "influxdata/influxdb/schema"
schema.tagValues(bucket: v.bucket, tag: "host")
Si votre requête fonctionne dans un dashboard InfluxDB ou en mode explore mais qu’elle est tronquée dans Grafana, il vous faudra ajuster le “Max Data Points” pour récupérer plus de points pour cette requête (cf grafana/grafana#26484).
Un client m’a demandé la chose suivante : “Nicolas, je voudrais savoir la durée pendant laquelle mes équipements sont au delà d’un certain seuil ; je n’arrive pas à le faire simplement”.
Souvent, quand on manipule des séries temporelles, la requête est de la forme “Sur la période X, donne moi les valeurs de tel indicateur”. On a moins l’habitude de travailler dans le sens inverse, à savoir : “Donne moi les périodes de temps pour laquelle la valeur est comprise entre X et Y”.
C’est ce que nous allons chercher à trouver.
Avec l’arrivée imminente d’Influx 2.0, j’avoue ne pas avoir cherché la solution mais je ne pense pas que cela soit faisable purement en InfluxQL.
Avec Flux, j’ai rapidement trouvé des fonctions comme duration et surtout stateDuration
L’exemple ci-dessous se fait avec une base InfluxDB 1.8.3 pour laquelle Flux a été activé. Le requêtage se fait depuis une instance Chronograf en version 1.8.5.
Pour approcher l’exemple de mon client, j’ai considéré le pourcentage d’inactivité des CPU d’un serveur que l’on obtient de la façon suivante:
from(bucket: "crntbackup/autogen")
|> range(start: dashboardTime)
|> filter(fn: (r) => r._measurement == "cpu" and r._field == "usage_idle" and r.cpu == "cpu-total")
|> window(every: autoInterval)
|> group(columns: ["_time", "_start", "_stop", "_value"], mode: "except")
Cela donne:
Ensuite, j’ai besoin d’une fonction qui va me rajouter une colonne avec mon état. Cet état est calculé en fonction de seuils - par souci de lisibilité, je vais extraire cette fonction de la façon suivante et appliquer la fonction à ma requête :
set_level = (tables=<-) =>
tables
|> map(fn: (r) => ({
r with
level:
if r._value >= 95 then "fully_idle"
else if r._value >= 90 and r._value <95 then "something_is_moving"
else if r._value >= 85 and r._value <90 then "oh_oh"
else if r._value >= 80 and r._value <85 then "hmm"
else if r._value < 80 then "i_have_to_work"
else "overloaded"
})
)
from(bucket: "crntbackup/autogen")
|> range(start: dashboardTime)
|> filter(fn: (r) => r._measurement == "cpu" and r._field == "usage_idle" and r.cpu == "cpu-total")
|> window(every: autoInterval)
|> group(columns: ["_time", "_start", "_stop", "_value"], mode: "except")
|> set_level()
La colonne “level” n’est à ce stade pas persistée en base contrairement aux autres données issue de la base de données.
Cela donne ceci en mode “raw data” - tout à fait à droite
Maintenant que j’ai mon état, je peux application la fonction stateDuration()
; elle va calculer la périodes de temps où le seuil est “something_is_moving” par tranche de 1 seconde. Le résulat sera stocké dans une colonne “stateDuration”. Pour les autres états, la valeur est de -1. La valeur se remet à 0 à chaque fois que l’état est atteint puis la durée est comptée :
set_level = (tables=<-) =>
tables
|> map(fn: (r) => ({
r with
level:
if r._value >= 95 then "fully_idle"
else if r._value >= 90 and r._value <95 then "something_is_moving"
else if r._value >= 85 and r._value <90 then "oh_oh"
else if r._value >= 80 and r._value <85 then "hmm"
else if r._value < 80 then "i_have_to_work"
else "overloaded"
})
)
from(bucket: "crntbackup/autogen")
|> range(start: dashboardTime)
|> filter(fn: (r) => r._measurement == "cpu" and r._field == "usage_idle" and r.cpu == "cpu-total")
|> window(every: autoInterval)
|> group(columns: ["_time", "_start", "_stop", "_value"], mode: "except")
|> set_level()
|> stateDuration(fn: (r) => r.level == "something_is_moving", column: "stateDuration", unit: 1s)
On voit le rajout de la colonne stateDuration
en mode “raw data” ; elle n’ont plus n’est pas persistée dans la base à ce stade :
et coté visualisation :
Maintenant que j’ai ces périodes, je vais vouloir savoir quelle est la durée totale de ces différentes périodes que nous avons identifée. On peut en effet imaginer un cas où on sait que l’équipement est à remplacer lorsqu’il a atteint un seuil donné pendant plus de X heures.
Pour cela, je vais:
set_level = (tables=<-) =>
tables
|> map(fn: (r) => ({
r with
level:
if r._value >= 95 then "fully_idle"
else if r._value >= 90 and r._value <95 then "something_is_moving"
else if r._value >= 85 and r._value <90 then "oh_oh"
else if r._value >= 80 and r._value <85 then "hmm"
else if r._value < 80 then "i_have_to_work"
else "overloaded"
})
)
from(bucket: "crntbackup/autogen")
|> range(start: dashboardTime)
|> filter(fn: (r) => r._measurement == "cpu" and r._field == "usage_idle" and r.cpu == "cpu-total")
|> window(every: autoInterval)
|> group(columns: ["_time", "_start", "_stop", "_value"], mode: "except")
|> set_level()
|> stateDuration(fn: (r) => r.level == "something_is_moving", column: "stateDuration", unit: 1s)
|> filter(fn: (r) => r.level == "something_is_moving")
|> derivative(unit: 10s, nonNegative: true, columns: ["stateDuration"], timeColumn: "_time")
|> sum(column: "stateDuration")
Ce qui me donne un total de 2230 secondes pour l’heure (3600s) qui vient de s’écouler.
C’est un POC rapide pour démontrer la faisabilité de la chose. Le code est surement améliorable/perfectible.
Dans un contexte InfluxDB 2.0, il y a aussi la fonction events.duration qui semble intéressante. Ce billet “TL;DR InfluxDB Tech Tips – How to Monitor States with InfluxDB” montre aussi l’usage de la fonction monitor.stateChanges()
qui peut compléter l’approche.
La fonction derivative
impose d’avoir des durées régulières pour calculer le delta. Dans le cas d’une série irrégulière, cela peut coincer rapidement et fausser les calculs. On peut donc remplacer les deux dernières lignes par la fonction increase. Elle prend la différence entre deux valeurs consécutives (quelque soit leur timestamp) et réalise une somme cumulative. Les différences négatives sont ignorées de la même façon que nous le faisions précédemment.
set_level = (tables=<-) =>
tables
|> map(fn: (r) => ({
r with
level:
if r._value >= 95 then "fully_idle"
else if r._value >= 90 and r._value <95 then "something_is_moving"
else if r._value >= 85 and r._value <90 then "oh_oh"
else if r._value >= 80 and r._value <85 then "hmm"
else if r._value < 80 then "i_have_to_work"
else "overloaded"
})
)
from(bucket: "crntbackup/autogen")
|> range(start: dashboardTime)
|> filter(fn: (r) => r._measurement == "cpu" and r._field == "usage_idle" and r.cpu == "cpu-total")
|> window(every: autoInterval)
|> group(columns: ["_time", "_start", "_stop", "_value"], mode: "except")
|> set_level()
|> stateDuration(fn: (r) => r.level == "something_is_moving", column: "stateDuration", unit: 1s)
|> filter(fn: (r) => r.level == "something_is_moving")
|> increase(columns: ["stateDuration"])
La sortie change un peu car au lieu d’un nombre unique, on a l’ensemble des points filtrés et leur somme au fur et à mesure (colonne de droite):
Cela donne des possiblités différentes au niveau dataviz :
En la même chose en WarpScript avec Warp 10, cela donne quoi ? Regardons cela :
'<readToken>' 'readToken' STORE
// Récupération des données de cpu de type "usage_idle" en ne prenant que le label "cpu-total"
[ $readToken '~crntd10monitoring.cpu.usage_idle' { 'cpu' 'cpu-total' } NOW 1 h ] FETCH
0 GET // Fetch retourne une liste de GTS, on prend donc la première (et unique) GTS
'cpu' STORE // Stockage dans une variable cpu
// Utilisation de BUCKETIZE pour créer une série régulière de données séparées par 1 seconde
// Mes données étant espacées d'environ 10s, cela va donc créer 10 entrées de 1 seconde au final
// Pour chaque espace, on utliise la dernière valeur connue de l'espace en question pour garder les valeurs de la GTS de départ
[
$cpu
bucketizer.last
0
1 s
0
]
BUCKETIZE
// Les espaces insérés n'ont pas encore de valeurs associées
// On remplit les entrées sans valeurs avec les valeurs ci-dessus
// On utilise FILLPREVIOUS et FILLNEXT pour gérer aussi les premières et dernières valeurs
FILLPREVIOUS
FILLNEXT
// A ce stade, on a donc une GTS avec un point toute les secondes et la valeur associée. Cette valeur était la valeur que l'on avait toutes les 10s précédemment.
// On fait une copie de la GTS pour pouvoir comparer avec la version filtrée par ex
DUP
// On filtre sur les valeurs qui nous intéressent, ici on veut les valeurs >= 90 et < 95
[ SWAP 90.0 mapper.ge 0 0 0 ] MAP
[ SWAP 95.0 mapper.lt 0 0 0 ] MAP
// On renomme la liste (pratique si on affiche par ex l'ancienne et la nouvelle liste dans la partie dataviz - cf capture ci-dessous)
'+:above90below95' RENAME
// On compte le nombre d'élément de la GTS qui est sous la forme d'une liste de GTS à l'issu du MAP
0 GET SIZE
// On multiplie le nombre d'entrées par 1 s
1 s *
// on garde une copie de la valeur en secondes
DUP
// On applique le filtre HUMANDURATION qui transforme ce volume de secondes en une durée compréhensible
HUMANDURATION
On voit ci-dessous l’usage de DUP avec la valeur humainement lisible, la valeur brute en seconde (puis le reste de la pile):
Si on ne veut pas de dataviz / ne pas conserver les valeurs intermédiaires et n’avoir que la valeur finale, on peut supprimer les lignes avec DUP
et RENAME
.
'<readToken>' 'readToken' STORE
[ $readToken '~crntd10monitoring.cpu.usage_idle' { 'cpu' 'cpu-total' } NOW 1 h ] FETCH
0 GET
'cpu' STORE
[
$cpu
bucketizer.last
0
1 s
0
]
BUCKETIZE
FILLPREVIOUS
FILLNEXT
[ SWAP 90.0 mapper.ge 0 0 0 ] MAP
[ SWAP 95.0 mapper.lt 0 0 0 ] MAP
0 GET SIZE
1 s *
HUMANDURATION
Et on obtient:
20m20.000000s
Un grand merci à Mathias Herberts pour sa disponiblité, sa patience et son aide face à toutes mes questions pour arriver à produire ce code.
On peut aussi vouloir avoir une version agrégée de la donnée plutôt que de filter sur un état particulier. Ainsi, on peut avoir la répartition des valeurs que prend un équipement sur un indicateur donnée.
'<readToken>' 'readToken' STORE
// Récupération des métriques comme précédemment
[ $readToken '~crntd10monitoring.cpu.usage_idle' { 'cpu' 'cpu-total' } NOW 1 h ] FETCH
0 GET
'cpu' STORE
// Reformatage des données comme précédemment
[
$cpu
bucketizer.last
0
1 s
0
]
BUCKETIZE
FILLPREVIOUS
FILLNEXT
// Utilisation de QUANTIZE
// QUANTIZE a besoin que l'on définisse des sous-ensembles dans un ensemble
// Notre indicateur CPU étant un pourcentage, on prend par ex 10 sous ensemble compris entre 0 et 100
// QUANTIZE gère aussi les cas où l'on est plus petit que la première valeur et plus grand que la derinère valeur de l'ensemble
0 100 10 LBOUNDS
// On a donc 10+2 = 12 sous-ensembles : ]-infini,0],[1, 10],[11, 20],...,[90, 100],[101, inf+[
// Pour chaque valeur que nous allons passer à QUANTIZE, elle va retourer une valeur associée au sous ensemble dans laquelle la valeur va "tomber".
// Ainsi, un valeur de 95% va aller dans gt90.
// Liste des valeurs pour les 12 sous-ensembles :
[ 'neg' 'gt0' 'gt10' 'gt20' 'gt30' 'gt40' 'gt50' 'gt60' 'gt70' 'gt80' 'gt90' 'gt100' ]
QUANTIZE
// A ce stade, notre GTS de départ ne contient plus les valeurs de cpu mais les valeurs associées au tableau de QUANTIZE
// on passe donc de [<timestamp>, 95.45] à [<timestamp>, 'gt90']
// Utilisation de VALUEHISTOGRAM qui va compter le nombre d'occurences de chaque valeur d'une liste de GTS
VALUEHISTOGRAM
On obtient alors :
[{"gt90":3491,"gt80":40,"gt70":40,"gt60":10}]
Et voilà !
acme
avec terraform pour la génération et le déploiement d’un certificat Let’s Encrypt dans un contexte AWS.Le Privacy Shield, l’accord entre l’Europe et les USA sur le transfert des données des Européens vers les USA (ou les sociétés américaines) vient d’être invalidé par la cour de justice européene. Les flux “absolument nécessaires” peuvent continuer à se faire pour le moment et la cour a validé “les clauses contractuelles types” définies par la Commission Européenne pourront être utilisées par les entreprises. Néanmoins, pour s’y référer, il semble qu’il faut vérifier que l’entreprise protège effectivement les données. Je vous invite à contacter votre juriste ou avocat pour mieux appréhender les impacts de cette invalidation si vous utilisez les plateformes cloud et des services dont les entreprises sont basées aux USA. En tant qu’individu, il peut être intéressant de se poser des questions également. N’étant pas juriste, je vais donc limiter mon interprétation ici et vous laisse lire les liens ci-dessous.
L’édition 4 du Paris Time Series Meetup s’est tenue hier soir. J’ai eu le plaisir d’accueillir David McKay, Developer Advocate InfluxData, qui est venu nous présenter la plateforme InfluxDB 2.0, le nouveau langage Flux et l’outil de collecte Telegraf (et les bonnes pratiques associées).
Vous pouvez d’ores et déjà retrouver les vidéos en ligne ; les présentations sont en anglais :
Et pour les ressources complémentaires mentionnées par David McKay :
Concernant l’édition 3 sur TSL et RedisTimeSeries, initiallement prévue en décembre 2019 et replanifiée le 21 janvier, elle aura finalement lieu le mercredi 25 Mars chez OVHCloud. Pour alimenter votre attente et comme indiqué dans le dernier billet de veille mensuelle, OVHCloud a publié erlenmeyer et vient de publier un billet de blog sur le sujet : TSL (or how to query time series databases).
Nous espérons vous y voir nombreux et en attendant, bon visionnage et bonne lecture !