Le blog tech de Nicolas Steinmetz (Time Series, IoT, Web, Ops, Data)
img
, kaniko
, etc. Pour les autres cas, il faudra peut être passer par l’API kubernetes ou trouver les alternatives qui vont bien.dockershim
pour permettre à ceux qui ont en besoin de pouvoir continuer à l’utliiser. La limite étant que si vous êtes sur du service managé et que votre provider ne le fournit pas, vous ne pourrez pas l’utiliser…docker logs
fonctionne avec tous les drivers de log et non unqiement json & journald et plein d’autres améliorations/harmonisations au niveau de la CLI. Pour ceux sous Fedora qui avaient bidouillé avec firewalld précédemment pour faire fonctionner docker et qui ont un problème lié à l’interface docker0 au démarrage du service docker, allez voir par ici.-mount
, les jpbs swarm et une synthèse de l’actualité de l’écosystème docker.network (dis)connect
, support des alias avec des noms courts, amélioration des commandes play|generate kube
et capacité de monter une image OCI dans un container.influxdb
et influxdb2
à passer pour ceux qui étaient déjà en 2.0 et ceci afin d’éviter que des gens en 1.x passent involontairement en 2.x, le “delete with predicate” a été réactivé, améliorations sur le process d’upgrade, des commandes autour des actions en mode V1, mise à jour de flux, et plein d’autres corrections/améliorations.Il ne me reste plus qu’à vous souhaiter de bonnes fêtes de fin d’année et on se retrouve l’année prochaine !
Kubernetes, c’est bien mais parfois on veut faire des choses plus simples et on n’a pas forcément besoin d’avoir un système distribué ou d’une forte disponibilité. Pour autant, il est agréable avec kubernetes de pouvoir interagit à distance avec l’API au travers de kubectl
. Je me suis donc mis en quête d’une alternative. Partir sur k3s avec un déploiement mono-node ? Partir sur docker/docker-compose/docker-swarm ?
Je me souvenais que l’on pouvait exposer la socket docker sur le réseau en TCP et authentification par certificat mais cela ne me plaisait pas beaucoup. Je me suis alors rappelé que l’on pouvait interagir avec un hote docker via une connection ssh. En continuant à creuser, je suis tomber sur les contextes dans Docker et ce billet How to deploy on remote Docker hosts with docker-compose. Et là : 🤩
Alors, certes, pas de secrets, configmaps ou cronjobs mais un déploiement remote que je peux automatiser dans gitlab et/ou avec lequel je peux interagir à distance 😍
Création d’un contexte puis utilisation d’un contexte :
# Création du contexte docker
docker context create mon-serveur ‐‐docker “host=ssh://user@monserveur”
# Lister les contextes docker existant
docker context ls
# Utiliser un contexte
docker context use mon-serveur
# Vérifier le bon fonctionnement de la cli docker
docker ps
[liste de conteneurs tournant sur la machine "mon-serveur"]
# Vérifier le bon fonctionnement de la cli docker-compose
cd /path/to/docker/compose/project
docker-compose ps
Pour que cela fonctionne, en plus des versions récentes de docker
et docker-compose
coté client et serveur. Il vous faut aussi une version récent de paramiko
coté client. Celle présente dans Debian 10 n’est pas assez à jour par ex, il a fallu passer par pip3 install paramiko
. Il faut aussi avoir une authentification par clé pour se simplifier la vie.
Pour docker-compose
, vous avez deux solutions pour utiliser un contexte distant :
# En deux commandes
docker context use <remote context>
docker-compose <command>
# En une commande
docker-compose --context <remote context> <command>
Dans gitlab, dans le fichier .gitlab-ci.yml
, on peut alors profiter de cette intégration de la façon suivante ; je prends l’exemple du déploiement du site du Paris Time Series Meetup.
Tout d’abord, dans mon fichier docker-compose.yml
, j’ai mis un place holder IMAGE
qui sera remplacé par la référence de mon image docker fabriquée par gitlab-ci :
version: '3.8'
services:
web:
image: IMAGE
labels:
[...]
restart: always
Ensuite, dans gitlab-ci :
docker.env
. Ce fichier sera sauvegardé en fin de job sous la forme d’un artefact disponible pour le job “docker”.docker.env
sous la forme de variable d’environnement. Il remplace ensuite IMAGE
par sa vraie valeur. On initialise le contexte docker pour se connecter au serveur cible et on peut alors réaliser les actions habituelles avec docker-compose
.---
stages:
- publish
- image
- deploy
publish:
image: $CI_REGISTRY/nsteinmetz/hugo:latest
artifacts:
paths:
- public
expire_in: 1 day
only:
- master
- web
script:
- hugo
stage: publish
tags:
- hugo
kaniko:
stage: image
image:
name: gcr.io/kaniko-project/executor:debug
entrypoint: [""]
variables:
RELEASE_IMAGE: $CI_REGISTRY_IMAGE:$CI_COMMIT_SHORT_SHA-$CI_PIPELINE_ID-$CI_JOB_ID
script:
- echo "IMAGE=${RELEASE_IMAGE}" >> docker.env
- mkdir -p /kaniko/.docker
- echo "{\"auths\":{\"$CI_REGISTRY\":{\"username\":\"$CI_REGISTRY_USER\",\"password\":\"$CI_REGISTRY_PASSWORD\"}}}" > /kaniko/.docker/config.json
- /kaniko/executor --context $CI_PROJECT_DIR --dockerfile $CI_PROJECT_DIR/Dockerfile --destination $RELEASE_IMAGE
only:
- master
- web
when: on_success
tags:
- kaniko
artifacts:
reports:
dotenv: docker.env
docker:
stage: deploy
before_script:
- docker login -u gitlab-ci-token -p $CI_JOB_TOKEN $CI_REGISTRY
script:
- sed -i -e "s|IMAGE|${IMAGE}|g" docker-compose.yml
- docker context use mon-serveur
- docker-compose pull
- docker-compose up -d
needs:
- job: kaniko
artifacts: true
when: on_success
only:
- master
- web
tags:
- shell
environment:
name: production
url: https://www.ptsm.io/
Et voilà ! 😎
Avec ces contextes (que l’on peut utiliser aussi avec swarm et kubernetes), on a donc un moyen simple et efficace pour déployer des conteneurs à distance et de façon automatisée.
Ce soir, il y a la 8ème édition du Paris Time Series Meetup sur AWS TimeStream.
scp file destination:/path/to/file
? La commande scp est victime de nombreuses failles. Du coup, elle va être dépréciée. Néanmoins une initiative vise à maintenir uen commande scp
mais se fondant sur sftp
et son modèle de sécurité.Pour ceux sous Fedora et utilisant podman en alternative au binaire docker, pour se connecter à la registry google (via):
gcloud auth print-access-token | podman login -u oauth2accesstoken --password-stdin gcr.io
InfluxDB 0SS 2.0 étant sortie, j’ai testé la mise à jour d’une instance 1.8.3 vers 2.0.1 sur une VM Debian 10 à jour.
La documentation pour une mise à jour 1.x vers 2.x est disponible. La vidéo “Path to InfluxDB 2.0: Seamlessly Migrate 1.x Data” reprend cela et va plus loin en présentant bien tous les points à prendre en compte (y compris pour Telegraf, Chronograf et Kapacitor). Je ne rajouterai donc que mes remarques.
Concernant la commande influxd upgrade
:
sudo
pour ne pas avoir de problèmes de permisisons.~/.influxdbV2
. Or je doute que vous vouliez que vos données soient à cet endroit. Je vous invite donc à regarder la documentation de influxd upgrade
pour définir les propriétés --engine-path
et --bolt-path
Exemple:
mkdir -p /srv/influxdb/influxdb2
influxd upgrade --engine-path /srv/influxdb/influxdb2/engine --bolt-path /srv/influxdb/influxdb2/influxd.bolt
config.toml
est généré dans /etc/influxdb/
. Il contient quelques valeurs issues de la migration et des valeurs par défaut. Je l’ai personnalisé de la façon suivante pour tenir compte de mes valeurs :bolt-path = "/srv/influx/influxdb2/influxd.bolt"
engine-path = "/srv/influx/influxdb2/engine"
http-bind-address = "127.0.0.1:8086"
storage-series-id-set-cache-size = 100
influxd
cherchait à initialiser ses fichiers dans /var/lib/influxdb/.influxdbv2
. Ayant noté que le service InfluxDB prennait /etc/default/influxdb
comme fichier d’environnement, j’ai ajouté dans ce fichier :# /etc/default/influxdb
INFLUXD_CONFIG_PATH=/etc/influxdb/config.toml
Dès lors, /etc/influxdb/config.toml
était bien pris en compte et InfluxDB démarrait bien avec mes données.
Une fois InfluxDB 2 démarré, j’ai pu noter avec plaisir :
Je n’ai donc pas d’urgence à migrer la configuration et le paramétrage de ces derniers. Je vais pouvoir le faire progressivement ces prochains jours.
N’utilisant pas Chronograf et Kapacitor, je n’ai pas eu de données à migrer ou d’ajustements à faire à ce niveau là. La vidéo reprend bien les points d’attention et les éventuelles limitations à prendre en compte dans le cadre de la migration.
Finalement, c’est pas mal qu’ils aient réintégrer les endpoints 1.x dans la version 2.0 à ce niveau là ;-)
La 2.0.2 étant sortie pendant ma mise à jour, j’ai poursuivi la mise à jour. Je suis tombé sur ce bug rendant l’écriture de données impossibles. Cela a mis en évidence un bug sur la migration des “retention policies” et sur le fait que j’avais aussi des très vieilles bases InfluxDB. Je n’aurai a priori pas eu ce bug en faisant la migration 1.8.3 vers 2.0.2. En tous cas, une 2.0.3 devrait donc arriver prochainement avec une amélioration du processus de migration faisant suite à ma séance de troubleshooting.
Elle peut se faire très progressivement - si par ex vous utilisez telegraf pour envoyer vos données et Grafana pour la partie dashboarding :
influxdb
à l’output influxdb_v2
sans impacter grafana qui continuera à accéder à vos données en InfluxQLSi vous devez rétablir un accès à vos données via les API 1.x à un bucket nouvellement créé (j’ai profité de la migration pour mettre des buckets clients dans des organisations représentant les clients en question).
# Créer le bucket
influx bucket create --name <BUCKET_NAME> --retention 0 --org <ORGANISATION>
# Récupérer l'ID de bucket via la liste des buckets
influx bucket list
# Créer une DBRP (DataBase Retention Policies) pour le bucket en question - les accès en 1.x se font en mode SELECT * FROM <db_name>.<retention_policies> ...
influx v1 dbrp create --bucket-id=<BUCKET_ID> --db=<BUCKET_NAME> --rp=autogen --default=true
# Créer un utilsateur sans mot de passe pour le moment
influx v1 auth create --username <USER> --read-bucket <BUCKET_ID> --write-bucket <BUCKET_ID> --org <ORGANISATION> --no-password
# Créer un mot de passe au format V1
influx v1 auth set-password --username <USER>
Les utilisateurs migrés depuis la version 1.x sont visibles via influx v1 auth list
.
Le support de Flux dans Grafan existe depuis la version 7.1 mais il n’est pas aussi aisé que celui dans InfluxDB 2.0 OSS. Il y a certes de la complétion au niveau du code ou le support des variables mais pas de capacité d’introspection sur la partie données.
Pour le moment, je procède donc de la façon suivante :
Ex coté InfluxDB 2.0 OSS / Flux :
from(bucket: v.bucket)
|> range(start: v.timeRangeStart, stop: v.timeRangeStop)
|> filter(fn: (r) => r["_measurement"] == "net")
|> filter(fn: (r) => r["_field"] == "bytes_recv" or r["_field"] == "bytes_sent")
|> filter(fn: (r) => r["host"] == v.host)
|> derivative(unit: v.windowPeriod, nonNegative: false)
|> yield(name: "derivative")
La version dans Grafana :
from(bucket: "${bucket}")
|> range(start: v.timeRangeStart, stop: v.timeRangeStop)
|> filter(fn: (r) => r["_measurement"] == "net")
|> filter(fn: (r) => r["_field"] == "bytes_recv" or r["_field"] == "bytes_sent")
|> filter(fn: (r) => r["host"] == "${host}")
|> derivative(unit: v.windowPeriod, nonNegative: false)
|> yield(name: "derivative")
La différence portant sur la gestion des variables v.host
vs "${host}"
et v.bucket
vs "${bucket}"
.
Autre bonne nouvelle, les variables sont supportées dans Grafana ; vous pouvez donc définir les variables comme celles vu juste au-dessus :
Variable bucket
de type “Query” en prenant InfluxDB/Flux comme datasource :
buckets()
|> filter(fn: (r) => r.name !~ /^_/)
|> rename(columns: {name: "_value"})
|> keep(columns: ["_value"])
Variable host
de type “Query” en prenant InfluxDB/Flux comme datasource :
# Provide list of hosts
import "influxdata/influxdb/schema"
schema.tagValues(bucket: v.bucket, tag: "host")
Si votre requête fonctionne dans un dashboard InfluxDB ou en mode explore mais qu’elle est tronquée dans Grafana, il vous faudra ajuster le “Max Data Points” pour récupérer plus de points pour cette requête (cf grafana/grafana#26484).
Un client m’a demandé la chose suivante : “Nicolas, je voudrais savoir la durée pendant laquelle mes équipements sont au delà d’un certain seuil ; je n’arrive pas à le faire simplement”.
Souvent, quand on manipule des séries temporelles, la requête est de la forme “Sur la période X, donne moi les valeurs de tel indicateur”. On a moins l’habitude de travailler dans le sens inverse, à savoir : “Donne moi les périodes de temps pour laquelle la valeur est comprise entre X et Y”.
C’est ce que nous allons chercher à trouver.
Avec l’arrivée imminente d’Influx 2.0, j’avoue ne pas avoir cherché la solution mais je ne pense pas que cela soit faisable purement en InfluxQL.
Avec Flux, j’ai rapidement trouvé des fonctions comme duration et surtout stateDuration
L’exemple ci-dessous se fait avec une base InfluxDB 1.8.3 pour laquelle Flux a été activé. Le requêtage se fait depuis une instance Chronograf en version 1.8.5.
Pour approcher l’exemple de mon client, j’ai considéré le pourcentage d’inactivité des CPU d’un serveur que l’on obtient de la façon suivante:
from(bucket: "crntbackup/autogen")
|> range(start: dashboardTime)
|> filter(fn: (r) => r._measurement == "cpu" and r._field == "usage_idle" and r.cpu == "cpu-total")
|> window(every: autoInterval)
|> group(columns: ["_time", "_start", "_stop", "_value"], mode: "except")
Cela donne:
Ensuite, j’ai besoin d’une fonction qui va me rajouter une colonne avec mon état. Cet état est calculé en fonction de seuils - par souci de lisibilité, je vais extraire cette fonction de la façon suivante et appliquer la fonction à ma requête :
set_level = (tables=<-) =>
tables
|> map(fn: (r) => ({
r with
level:
if r._value >= 95 then "fully_idle"
else if r._value >= 90 and r._value <95 then "something_is_moving"
else if r._value >= 85 and r._value <90 then "oh_oh"
else if r._value >= 80 and r._value <85 then "hmm"
else if r._value < 80 then "i_have_to_work"
else "overloaded"
})
)
from(bucket: "crntbackup/autogen")
|> range(start: dashboardTime)
|> filter(fn: (r) => r._measurement == "cpu" and r._field == "usage_idle" and r.cpu == "cpu-total")
|> window(every: autoInterval)
|> group(columns: ["_time", "_start", "_stop", "_value"], mode: "except")
|> set_level()
La colonne “level” n’est à ce stade pas persistée en base contrairement aux autres données issue de la base de données.
Cela donne ceci en mode “raw data” - tout à fait à droite
Maintenant que j’ai mon état, je peux application la fonction stateDuration()
; elle va calculer la périodes de temps où le seuil est “something_is_moving” par tranche de 1 seconde. Le résulat sera stocké dans une colonne “stateDuration”. Pour les autres états, la valeur est de -1. La valeur se remet à 0 à chaque fois que l’état est atteint puis la durée est comptée :
set_level = (tables=<-) =>
tables
|> map(fn: (r) => ({
r with
level:
if r._value >= 95 then "fully_idle"
else if r._value >= 90 and r._value <95 then "something_is_moving"
else if r._value >= 85 and r._value <90 then "oh_oh"
else if r._value >= 80 and r._value <85 then "hmm"
else if r._value < 80 then "i_have_to_work"
else "overloaded"
})
)
from(bucket: "crntbackup/autogen")
|> range(start: dashboardTime)
|> filter(fn: (r) => r._measurement == "cpu" and r._field == "usage_idle" and r.cpu == "cpu-total")
|> window(every: autoInterval)
|> group(columns: ["_time", "_start", "_stop", "_value"], mode: "except")
|> set_level()
|> stateDuration(fn: (r) => r.level == "something_is_moving", column: "stateDuration", unit: 1s)
On voit le rajout de la colonne stateDuration
en mode “raw data” ; elle n’ont plus n’est pas persistée dans la base à ce stade :
et coté visualisation :
Maintenant que j’ai ces périodes, je vais vouloir savoir quelle est la durée totale de ces différentes périodes que nous avons identifée. On peut en effet imaginer un cas où on sait que l’équipement est à remplacer lorsqu’il a atteint un seuil donné pendant plus de X heures.
Pour cela, je vais:
set_level = (tables=<-) =>
tables
|> map(fn: (r) => ({
r with
level:
if r._value >= 95 then "fully_idle"
else if r._value >= 90 and r._value <95 then "something_is_moving"
else if r._value >= 85 and r._value <90 then "oh_oh"
else if r._value >= 80 and r._value <85 then "hmm"
else if r._value < 80 then "i_have_to_work"
else "overloaded"
})
)
from(bucket: "crntbackup/autogen")
|> range(start: dashboardTime)
|> filter(fn: (r) => r._measurement == "cpu" and r._field == "usage_idle" and r.cpu == "cpu-total")
|> window(every: autoInterval)
|> group(columns: ["_time", "_start", "_stop", "_value"], mode: "except")
|> set_level()
|> stateDuration(fn: (r) => r.level == "something_is_moving", column: "stateDuration", unit: 1s)
|> filter(fn: (r) => r.level == "something_is_moving")
|> derivative(unit: 10s, nonNegative: true, columns: ["stateDuration"], timeColumn: "_time")
|> sum(column: "stateDuration")
Ce qui me donne un total de 2230 secondes pour l’heure (3600s) qui vient de s’écouler.
C’est un POC rapide pour démontrer la faisabilité de la chose. Le code est surement améliorable/perfectible.
Dans un contexte InfluxDB 2.0, il y a aussi la fonction events.duration qui semble intéressante. Ce billet “TL;DR InfluxDB Tech Tips – How to Monitor States with InfluxDB” montre aussi l’usage de la fonction monitor.stateChanges()
qui peut compléter l’approche.
La fonction derivative
impose d’avoir des durées régulières pour calculer le delta. Dans le cas d’une série irrégulière, cela peut coincer rapidement et fausser les calculs. On peut donc remplacer les deux dernières lignes par la fonction increase. Elle prend la différence entre deux valeurs consécutives (quelque soit leur timestamp) et réalise une somme cumulative. Les différences négatives sont ignorées de la même façon que nous le faisions précédemment.
set_level = (tables=<-) =>
tables
|> map(fn: (r) => ({
r with
level:
if r._value >= 95 then "fully_idle"
else if r._value >= 90 and r._value <95 then "something_is_moving"
else if r._value >= 85 and r._value <90 then "oh_oh"
else if r._value >= 80 and r._value <85 then "hmm"
else if r._value < 80 then "i_have_to_work"
else "overloaded"
})
)
from(bucket: "crntbackup/autogen")
|> range(start: dashboardTime)
|> filter(fn: (r) => r._measurement == "cpu" and r._field == "usage_idle" and r.cpu == "cpu-total")
|> window(every: autoInterval)
|> group(columns: ["_time", "_start", "_stop", "_value"], mode: "except")
|> set_level()
|> stateDuration(fn: (r) => r.level == "something_is_moving", column: "stateDuration", unit: 1s)
|> filter(fn: (r) => r.level == "something_is_moving")
|> increase(columns: ["stateDuration"])
La sortie change un peu car au lieu d’un nombre unique, on a l’ensemble des points filtrés et leur somme au fur et à mesure (colonne de droite):
Cela donne des possiblités différentes au niveau dataviz :
En la même chose en WarpScript avec Warp 10, cela donne quoi ? Regardons cela :
'<readToken>' 'readToken' STORE
// Récupération des données de cpu de type "usage_idle" en ne prenant que le label "cpu-total"
[ $readToken '~crntd10monitoring.cpu.usage_idle' { 'cpu' 'cpu-total' } NOW 1 h ] FETCH
0 GET // Fetch retourne une liste de GTS, on prend donc la première (et unique) GTS
'cpu' STORE // Stockage dans une variable cpu
// Utilisation de BUCKETIZE pour créer une série régulière de données séparées par 1 seconde
// Mes données étant espacées d'environ 10s, cela va donc créer 10 entrées de 1 seconde au final
// Pour chaque espace, on utliise la dernière valeur connue de l'espace en question pour garder les valeurs de la GTS de départ
[
$cpu
bucketizer.last
0
1 s
0
]
BUCKETIZE
// Les espaces insérés n'ont pas encore de valeurs associées
// On remplit les entrées sans valeurs avec les valeurs ci-dessus
// On utilise FILLPREVIOUS et FILLNEXT pour gérer aussi les premières et dernières valeurs
FILLPREVIOUS
FILLNEXT
// A ce stade, on a donc une GTS avec un point toute les secondes et la valeur associée. Cette valeur était la valeur que l'on avait toutes les 10s précédemment.
// On fait une copie de la GTS pour pouvoir comparer avec la version filtrée par ex
DUP
// On filtre sur les valeurs qui nous intéressent, ici on veut les valeurs >= 90 et < 95
[ SWAP 90.0 mapper.ge 0 0 0 ] MAP
[ SWAP 95.0 mapper.lt 0 0 0 ] MAP
// On renomme la liste (pratique si on affiche par ex l'ancienne et la nouvelle liste dans la partie dataviz - cf capture ci-dessous)
'+:above90below95' RENAME
// On compte le nombre d'élément de la GTS qui est sous la forme d'une liste de GTS à l'issu du MAP
0 GET SIZE
// On multiplie le nombre d'entrées par 1 s
1 s *
// on garde une copie de la valeur en secondes
DUP
// On applique le filtre HUMANDURATION qui transforme ce volume de secondes en une durée compréhensible
HUMANDURATION
On voit ci-dessous l’usage de DUP avec la valeur humainement lisible, la valeur brute en seconde (puis le reste de la pile):
Si on ne veut pas de dataviz / ne pas conserver les valeurs intermédiaires et n’avoir que la valeur finale, on peut supprimer les lignes avec DUP
et RENAME
.
'<readToken>' 'readToken' STORE
[ $readToken '~crntd10monitoring.cpu.usage_idle' { 'cpu' 'cpu-total' } NOW 1 h ] FETCH
0 GET
'cpu' STORE
[
$cpu
bucketizer.last
0
1 s
0
]
BUCKETIZE
FILLPREVIOUS
FILLNEXT
[ SWAP 90.0 mapper.ge 0 0 0 ] MAP
[ SWAP 95.0 mapper.lt 0 0 0 ] MAP
0 GET SIZE
1 s *
HUMANDURATION
Et on obtient:
20m20.000000s
Un grand merci à Mathias Herberts pour sa disponiblité, sa patience et son aide face à toutes mes questions pour arriver à produire ce code.
On peut aussi vouloir avoir une version agrégée de la donnée plutôt que de filter sur un état particulier. Ainsi, on peut avoir la répartition des valeurs que prend un équipement sur un indicateur donnée.
'<readToken>' 'readToken' STORE
// Récupération des métriques comme précédemment
[ $readToken '~crntd10monitoring.cpu.usage_idle' { 'cpu' 'cpu-total' } NOW 1 h ] FETCH
0 GET
'cpu' STORE
// Reformatage des données comme précédemment
[
$cpu
bucketizer.last
0
1 s
0
]
BUCKETIZE
FILLPREVIOUS
FILLNEXT
// Utilisation de QUANTIZE
// QUANTIZE a besoin que l'on définisse des sous-ensembles dans un ensemble
// Notre indicateur CPU étant un pourcentage, on prend par ex 10 sous ensemble compris entre 0 et 100
// QUANTIZE gère aussi les cas où l'on est plus petit que la première valeur et plus grand que la derinère valeur de l'ensemble
0 100 10 LBOUNDS
// On a donc 10+2 = 12 sous-ensembles : ]-infini,0],[1, 10],[11, 20],...,[90, 100],[101, inf+[
// Pour chaque valeur que nous allons passer à QUANTIZE, elle va retourer une valeur associée au sous ensemble dans laquelle la valeur va "tomber".
// Ainsi, un valeur de 95% va aller dans gt90.
// Liste des valeurs pour les 12 sous-ensembles :
[ 'neg' 'gt0' 'gt10' 'gt20' 'gt30' 'gt40' 'gt50' 'gt60' 'gt70' 'gt80' 'gt90' 'gt100' ]
QUANTIZE
// A ce stade, notre GTS de départ ne contient plus les valeurs de cpu mais les valeurs associées au tableau de QUANTIZE
// on passe donc de [<timestamp>, 95.45] à [<timestamp>, 'gt90']
// Utilisation de VALUEHISTOGRAM qui va compter le nombre d'occurences de chaque valeur d'une liste de GTS
VALUEHISTOGRAM
On obtient alors :
[{"gt90":3491,"gt80":40,"gt70":40,"gt60":10}]
Et voilà !