CérénIT

Le blog tech de Nicolas Steinmetz (Time Series, IoT, Web, Ops, Data)

Web, Ops & Data - Janvier 2020

timeseries cloud ovh s3 object storage delta git diff faas containerd raspberrypi influxdb vscode flux warp10 observabilité docker cnab postgresql grafana

Meilleurs voeux à tous pour cette nouvelle année !

Cloud

  • OVHcloud Object Storage clusters support S3 API : pour ceux qui ne voulaient pas aller chez OVH car leur système de stockage objet est basé sur Openstack/Swift et ne voulaient pas modifier leurs appels d’API S3, une bonne nouvelle : le stockage objet d’OVH Cloud supporte l’API S3.

Container & Orchestration

  • Managing the TICK Stack with Docker App : cet article aurait pu être dans la section Time Series mais le focus étant sur Docker et Docker App, il sera dans la section Container. L’article montre comment déployer la stack TICK (Telegraf, InfluxDB, Chronograf et Kapacitor) tout d’abord via un fichier docker-compose.yml et ensuite il montre les apports de Docker App, qui permet d’avoir un niveau de personnalisation supplémentaire. Ainsi, on peut avoir un seul fichier docker-compose.yml de référence et auquel on rajoute un fichier avec des propriétés par environnement ou par client ou par instance par ex. Une combinaison intéressante pour améliorer l’industrialisation de vos containers.
  • Kubernetes 1.17 disponible sur l’offre kubernetes managé d’OVHCloud

DevOps/SRE

  • The 3 Myths of Observability : l’observabilité ne va pas directement baisser votre nombre d’incidents, l’observabilité n’est pas qu’une suite d’outils et elle n’est pas gratuite.

Outillage

  • delta : pour améliorer le rendu de vos diff et certaines commandes git (diff, show, log, stash, reflog). L’outil est réalisé en rust. Cela donne un rendu à la github/gitlab dans votre console. Sympa !

Raspberry Pi

  • faasd - lightweight Serverless for your Raspberry Pi : si vous jugez k3s encore trop gros pour vos raspberry pi pour faire tourner OpenFaaS ou que vous ne voulez pas déployer du kubernetes, vous pourriez trouver la solution du coté de faasd. Une implémentation du projet basée sur containerd (le runtime utilisée par Docker)
  • HypriotOS v1.12.0 : la distribution optimisée pour Raspberry Pi et fournissant Docker arrive en version 1.12. Elle permet d’utiliser Docker sur tous les modèles de Raspberry (0, 1, 2, 3, 4) avec les dernières versions de docker, docker-compose et docker-machine.

SQL

  • Améliorez votre SQL : utilisez des index filtrés : Postgresql permet de définir des index filtrés : plutôt que de créer un index sur toutes les données d’une table, vous pouvez définir un index qui répond à un filtre et ne faire un index que sur ce sous-ensemble de données.

Time Series

  • Grafana v6.6 Released : nouvelle version de Grafana avec comme d’habitude plein d’améliorations à tous les étages (data source, panels, alerting, explore, etc)
  • Release Announcement: Flux VSCode Support : InfluxData a publié une extension VSCode pour le langage flux.
  • InfluxDB 2.0 Open Source Beta Released : InfluxData passe la version OSS d’iInfluxDB 2.0 en béta après une année de versions alpha. On y trouve notamment une approche Configuration As Code avec la possibilité de définir des Tasks, Dashboards, ainsi que de la configuration via des Manifest en YAML et un système de packages. Flux, le nouveau langage de requêtage continue à s’améliorer et enfin le transpiler InfluxQL vers Flux fait son entrée mais demande à s’améliorer au fil du temps. La beta 2 est sortie aussi.
  • telegaf warp10 output : la prochaine version de Telegraf supportera nativement Warp10.
  • Erlenmeyer: Time Series query translator : OVHCloud vient d’opensourcer le code de leur proxy en go qui leur permet de parser des requêtes de différentes bases de données time series (OpenTSDB, PromQL, Prometheus Remote Read, InfluxQL et Graphite) en Warpscript pour requêter les données stockées dans Warp10. Pour rappel, la solution OVHMetrics est basée sur Warp10.
  • Le traitement et l’utilisation de la data dans l’industry 4.0 : SenX, la société éditrice de Warp10, a réalisé une vidéo intéressante sur le traitement et l’utilisation de la data dans l’industrie 4.0. On y voit notamment les 4 niveaux de maturité quant à la donnée et le rôle d’une base de données temporelles dans ce contexte. Un billet de blog (en anglais) est également disponible.

Web, Ops & Data - Décembre 2019

influxdb docker kubernetes traefik grafana dashboard cassandra reaper warp10 timeseries timescaledb helm machine-learning

Rendez-vous le 21 janvier prochain à la troisième édition du Paris Time Series Meetup consacré à TSL (billet introductif à TSL : TSL: a developer-friendly Time Series query language for all our metrics) et le module RedisTimeSeries qui apporte des fonctionnalités et des structures Time Seriies à Redis. Le meetup était prévu initialement le mardi 17 décembre mais a été reporté du fait des grèves.

Container et orchestration

  • DockerSlim : le projet vise à réduire la taille de vos images et à améliorer leur sécurité en procédant à différentes optimisations. Cela peut être intéressant dans une stratégie d’améliorations de vos images docker mais à tester néanmoins. Les exemples données partent d’Ubuntu 14.04 dont l’image fait 60 / 65 Mo alors que l’image Ubuntu 16.04 fait moitié moins et Alpine fait 30 fois moins. Donc certains gains semblent faciles à obtenir, à creuser plus en détail.
  • Kubernetes 1.17: Stability : après une version 1.16 marquée notamment par la dépréciation de certaines APIs, cette version se veut plus une consolidation autour des “Cloud Provider Labels” qui passent en GA, le snapshot de volumes qui passe en beta, ainsi que la couche de stockage CSI avec la poursuite de la migration des plugins “in-tree” vs “out-of-tree”. La fin de cette migration est prévue pour les versions 1.19 / 1.20 et le retrait complet des plugins “in-tree” pour les versions 1.21 / 1.22.
  • A visual guide on troubleshooting Kubernetes deployments : un guide du troublehooting des déploiements sous kubernetes avec un joli diagramme des cas possibles et les explications associées en repartant d’un exemple simple.
  • How to migrate from Helm v2 to Helm v3 : les opérations à mener pour migrer de Helm V2 à Helm V3.
  • Traefik 2.1 : le provider Consul Catalog fait son retour (il était absent en 2.0.x) et diverses améliorations sur la CRD Kubernetes ont été apportées pour mieux gérer le mirroring du traffic, les déploiements canary et la gestion des sessions. La migration ne consistant pas seulement à changer le numéro de version et suite à une remarque de ma part, une note a été ajoutée pour la migration 2.0.x vers 2.1.x

Dataviz

NoSQL

  • Cassandra Reaper 2.0 was released : la solution de réparation de vos clusters Cassandra passe en 2.0 ; elle apporte un déploiement en mode sidecar (reaper est lancé dans la même jvm que Cassandra), le support d’Apache Cassandra 4.0 (pas encore officiellement disponible), de nouveaux thèmes, une amélioration du support de Postgresql comme backend de déploiement et pleins d’autres choses.

Time Series

Je n’ai plus qu’à vous souhaiter des bonnes fêtes de fin d’année ; nous nous retrouvons l’année prochaine !

Exporter les métriques Traefik dans InfluxDB dans un contexte Kubernetes

kubernetes traefik influxdb métrique timeseries

Traefik, depuis sa version V1, permet d’envoyer des métriques vers différents backends (StatsD, Prometheus, InfluxDB et Datadog). J’ai enfin pris le temps d’activer cette fonctionnalité et de creuser un peu le sujet étant donné que le dashboard de Traefik V2 n’affiche plus certaines de ses statistiques.

La documentation de Traefik sur le sujet :

Commençons par créer une base traefik dans InfluxDB (version 1.7.8)

influx
Connected to http://localhost:8086 version 1.7.8
InfluxDB shell version: 1.7.9
> auth
username: XXX
password: XXX
> CREATE DATABASE traefik
> CREATE USER traefik WITH PASSWORD '<password>'
> GRANT ALL ON traefik to traefik
> SHOW GRANTS FOR traefik
database privilege
-------- ---------
traefik  ALL PRIVILEGES
> quit

Dans mon cas, l’accès à InfluxDB se fait en https au travers d’une (autre) instance Traefik. J’utilise donc la connexion en http plutôt qu’en udp.

Cela donne les instructions suivantes en mode CLI :

    --metrics=true
    --metrics.influxdb=true
    --metrics.influxdb.address=https://influxdb.domain.tld:443
    --metrics.influxdb.protocol=http
    --metrics.influxdb.database=traefik
    --metrics.influxdb.username=traefik
    --metrics.influxdb.password=<password>

J’ai gardé les valeurs par défaut pour addEntryPointsLabels (true), addServicesLabels (true) et pushInterval (10s).

Cela donne le Deployment suivant :

apiVersion: apps/v1
kind: Deployment
metadata:
  name: traefik2-ingress-controller
  labels:
    k8s-app: traefik2-ingress-lb
spec:
  replicas: 2
  selector:
    matchLabels:
      k8s-app: traefik2-ingress-lb
  template:
    metadata:
      labels:
        k8s-app: traefik2-ingress-lb
        name: traefik2-ingress-lb
    spec:
      serviceAccountName: traefik2-ingress-controller
      terminationGracePeriodSeconds: 60
      containers:
      - image: traefik:2.0.6
        name: traefik2-ingress-lb
        ports:
          - name: web
            containerPort: 80
          - name: admin
            containerPort: 8080
          - name: secure
            containerPort: 443
        readinessProbe:
          httpGet:
            path: /ping
            port: admin
          failureThreshold: 1
          initialDelaySeconds: 10
          periodSeconds: 10
          successThreshold: 1
          timeoutSeconds: 2
        livenessProbe:
          httpGet:
            path: /ping
            port: admin
          failureThreshold: 3
          initialDelaySeconds: 10
          periodSeconds: 10
          successThreshold: 1
          timeoutSeconds: 2
        args:
          - --entryPoints.web.address=:80
          - --entryPoints.secure.address=:443
          - --entryPoints.traefik.address=:8080
          - --api.dashboard=true
          - --api.insecure=true
          - --ping=true
          - --providers.kubernetescrd
          - --providers.kubernetesingress
          - --log.level=ERROR
          - --metrics=true
          - --metrics.influxdb=true
          - --metrics.influxdb.address=https://influxdb.domain.tld:443
          - --metrics.influxdb.protocol=http
          - --metrics.influxdb.database=traefik
          - --metrics.influxdb.username=traefik
          - --metrics.influxdb.password=<password>

Appliquer le contenu du fichier dans votre cluster Kubernetes

kubectl apply -f deployment.yml -n <namespace>

Sur le dashboard Traefik, dans la section “Features”, la boite “Metrics” doit afficher “InfluxDB”, comme ci-dessous :

Traefik Dashboard avec les métriques InfluxDB activés

Vous pouvez alors vous connecter à votre instance InfluxDB pour valider que des données sont bien insérées :

influx
Connected to http://localhost:8086 version 1.7.8
InfluxDB shell version: 1.7.9
> auth
username: traefik
password:
> use traefik
Using database traefik
> show measurements
name: measurements
name
----
traefik.config.reload.lastSuccessTimestamp
traefik.config.reload.total
traefik.entrypoint.connections.open
traefik.entrypoint.request.duration
traefik.entrypoint.requests.total
traefik.service.connections.open
traefik.service.request.duration
traefik.service.requests.total

Il ne vous reste plus qu’à utiliser Chronograf ou Grafana pour visualiser vos données et définir des alertes.

Un exemple rapide avec la répartition des codes HTTP dans Grafana :

Graphiques des données de Traefik depuis InfluxDB dans Grafana

Web, Ops & Data - Novembre 2019

docker docker-compose docker-hub kubernetes registry quay redhat scanner sécurité helm k3s pod jenkins pipeline redis timeseries machine-learning prediction ksql kafka-streams

Rendez-vous le 17 décembre prochain à la troisième édition du Paris Time Series Meetup consacré à TSL (billet introductif à TSL : TSL: a developer-friendly Time Series query language for all our metrics) et le module RedisTimeSeries qui apporte des fonctionnalités et des structures Time Seriies à Redis.

Cloud

  • The RIPE NCC has run out of IPv4 Addresses : Le RIPE NCC vient d’annoncer avoir attribué son dernier bloc d’IP v4 en /22. La réserve d’IPv4 est donc épuisée mais pour autant cela ne veut pas dire que toutes les IPv4 sont utilisées. Par ailleurs le RIPE NCC précise que de nouveaux blocs devraient voir le jour au fur et à mesure que des organisations revendent des plages inutilisées ou cessent leur activité. Le mécanisme d’attribution se fera alors sous la forme d’une liste d’attente. Ce n’est donc pas l’IPcalypse même si on s’en rapproche de plus en plus et s’il faut prévoir de passer à IPV6 de plus en plus rapidement.

Container et Orchestration

  • Red Hat Introduces open source Project Quay container registry : De la même manière que RedHat publie l’upstream d’Ansible Tower avec le projet AWX, RedHat va fournir l’upstream de Quay (registry docker) et Clair (scanner vulnérabilités) sous le nom de Project Quay
  • Helm 3.0.0 has been released! : si tout le monde attendait la suppression de tiller, ce n’est pas la seule nouveauté. Le billet donne aussi plein de liens sur la migration vers helm 3, la politique de support de Helm 2 (bug & sécurité pour 6 mois et sécurité uniquement les 6 mois suivants), etc.
  • Mirantis acquires Docker Enterprise, Docker Restructures and Secures $35 Million to Advance Developer Workflows for Modern Applications et Docker’s Next Chapter: Advancing Developer Workflows for Modern Apps : Mirantis rachète la branche “Entreprise” de Docker Inc et les actifs associés (employés et propriété intellectuelle). Docker Inc va se focaliser sur l’expérience utilisateur (Docker Desktop, Docker-Compse, Docker-Apps, etc). Pour cela, en plus d’une restructuration du capital, ils ont sécurisé 35 millions de dollars. Il est quand même étonnant de voir qu’à court terme, en dehors de la vente à Mirantis, Docker Inc n’a plus de sources de revenus…
  • What Docker Inc’s Reorganization Means For Docker Swarm : Suite à l’annonce précédente, il est légitime de se demander ce que va devenir Swarm. Le produit est donc géré par Mirantis et ces derniers ont embauché la personne en charge de Swarm et lui ont apparemment donné des garanties de pérénité du projet. Il conviendra de rester prudent sur le sujet même si j’espère que le projet Swarm continuera à exister. En effet, il est bien pratique et léger dans beaucoup de cas qui ne requiert pas Kubernetes.
  • k3s 1.0 : k3s, la version allégée mais certifiée de k8s atteint la version 1.0. Très pratique pour faire du k8s sur des raspberry pi et assimilés.
  • KSS - Kubernetes pod status on steroid : un petit script python qui permet d’avoir un status d’un pod et de son/ses container(s)

Data

  • Introducing ksqlDB : Confluent, l’entreprise derrière Apache Kafka et la Confluent Platform sort une nouvelle version de ksql qui est renommé ksqlDB. ksql se voit donc ajouter un connecteur sql pour des enrichissements depuis des sources de données externes, ainsi qu’un système de requêtage dynamiques de topics Kafka pour le présenter sous la forme d’une base de données et prendre en compte les changements au fur et à mesure qu’ils arrivent. Ce n’est donc pas une base de données à proprement parler mais nommer les choses en informatique, c’est une chose compliquée…

Outillage

  • Welcome to the Matrix : Le plugin Declarative Pipeline se dote d’une propriété matrix qui va permettre de faire la même action avec des configurations différentes plutôt que d’avoir un jenkinsfile pour chaque option/déclinaison du job. Le parallelisme semble supporté par défaut et un système d’inclusion/exclusion permet de mieux définir la combinaison des possibles. Dans l’exemple donné qui croise des systèmes d’exploitation et des navigateurs, cela permet par ex de ne pas lancer le job utilisant Micrsoft Edge sous Linux (même si…).

Tech

Time Series

Kubernetes @ OVH - Traefik2 et Cert Manager pour le stockage des certificats en secrets

kubernetes traefik ovh secrets cert-manager

Avec la sortie de Traefik 2, il était temps de mettre à jour le billet Kubernetes @ OVH - Traefik et Cert Manager pour le stockage des certificats en secrets pour tenir compte des modifications.

L’objectif est toujours de s’appuyer sur Cert-Manager pour la génération et le stockage des certificats Let’s Encrypt qui seront utilisés par Traefik. L’idée est de stocker ces certificats sous la forme d’un objet Certificate et de ne plus avoir à provisionner un volume pour les stocker. On peut dès lors avoir plusieurs instances de Traefik et non plus une seule à laquelle le volume serait attaché.

Installation de cert-manager :

# Install the CustomResourceDefinition resources separately
kubectl apply --validate=false -f https://raw.githubusercontent.com/jetstack/cert-manager/release-0.11/deploy/manifests/00-crds.yaml

# Create the namespace for cert-manager
kubectl create namespace cert-manager

# Add the Jetstack Helm repository
helm repo add jetstack https://charts.jetstack.io

# Update your local Helm chart repository cache
helm repo update

# Install the cert-manager Helm chart
helm install \
  --name cert-manager \
  --namespace cert-manager \
  --version v0.11.0 \
  jetstack/cert-manager

Nous allons ensuite devoir créer un Issuer dans chaque namespace pour avoir un générateur de certificats propre à chaque namespace. Cela est notamment du au fait que Traefik s’attend à ce que le secret et l’ingress utilisant ce secret soient dans le même namespace. Nous spécifions également que nous utiliserons traefik comme ingress pour la génération des certificats.

cert-manager/issuer.yml:

apiVersion: cert-manager.io/v1alpha2
kind: Issuer
metadata:
  name: letsencrypt-prod
spec:
  acme:
    # The ACME server URL
    server: https://acme-v02.api.letsencrypt.org/directory
    # Email address used for ACME registration
    email: user@example.com
    # Name of a secret used to store the ACME account private key
    privateKeySecretRef:
      name: letsencrypt-prod
    # Enable HTTP01 validations
    solvers:
    - selector: {}
      http01:
        ingress:
          class: traefik

Puis créons le “issuer” dans la/les namespace(s) voulu(s) :

# Create issuer in a given namespace
kubectl create -n <namespace> -f cert-manager/issuer.yml

Installons ensuite traefik V2

Créons le namespace traefik2 :

# Create namespace
kubectl create ns traefik2
# Change context to this namespace so that all commands are by default run for this namespace
# see https://github.com/ahmetb/kubectx
kubens traefik2

En premier lieu, Traefik V2 permet d’avoir un provider Kubernetes qui se base sur des Custom Ressources Definition (aka CRD).

Créeons le fichier traefik2/crd.yml :

---
apiVersion: apiextensions.k8s.io/v1beta1
kind: CustomResourceDefinition
metadata:
  name: ingressroutes.traefik.containo.us
spec:
  group: traefik.containo.us
  version: v1alpha1
  names:
    kind: IngressRoute
    plural: ingressroutes
    singular: ingressroute
  scope: Namespaced
---
apiVersion: apiextensions.k8s.io/v1beta1
kind: CustomResourceDefinition
metadata:
  name: middlewares.traefik.containo.us
spec:
  group: traefik.containo.us
  version: v1alpha1
  names:
    kind: Middleware
    plural: middlewares
    singular: middleware
  scope: Namespaced
---
apiVersion: apiextensions.k8s.io/v1beta1
kind: CustomResourceDefinition
metadata:
  name: ingressroutetcps.traefik.containo.us
spec:
  group: traefik.containo.us
  version: v1alpha1
  names:
    kind: IngressRouteTCP
    plural: ingressroutetcps
    singular: ingressroutetcp
  scope: Namespaced
---
apiVersion: apiextensions.k8s.io/v1beta1
kind: CustomResourceDefinition
metadata:
  name: ingressrouteudps.traefik.containo.us
spec:
  group: traefik.containo.us
  version: v1alpha1
  names:
    kind: IngressRouteUDP
    plural: ingressrouteudps
    singular: ingressrouteudp
  scope: Namespaced
---
apiVersion: apiextensions.k8s.io/v1beta1
kind: CustomResourceDefinition
metadata:
  name: tlsoptions.traefik.containo.us
spec:
  group: traefik.containo.us
  version: v1alpha1
  names:
    kind: TLSOption
    plural: tlsoptions
    singular: tlsoption
  scope: Namespaced
---
apiVersion: apiextensions.k8s.io/v1beta1
kind: CustomResourceDefinition
metadata:
  name: tlsstores.traefik.containo.us
spec:
  group: traefik.containo.us
  version: v1alpha1
  names:
    kind: TLSStore
    plural: tlsstores
    singular: tlsstore
  scope: Namespaced
---
apiVersion: apiextensions.k8s.io/v1beta1
kind: CustomResourceDefinition
metadata:
  name: traefikservices.traefik.containo.us
spec:
  group: traefik.containo.us
  version: v1alpha1
  names:
    kind: TraefikService
    plural: traefikservices
    singular: traefikservice
  scope: Namespaced

Vous pouvez retrouver les sources de ces CRD.

Continuons avec traefik2/rbac.yml - le fichier défini le compte de service (Service Account), le rôle au niveau du cluster (Cluster Role) et la liaison entre le rôle et le compte de service (Cluster Role Binding). Si vous venez d’une installation avec Traefik 1, ce n’est pas tout à fait la même définition des permissions.

---
apiVersion: v1
kind: ServiceAccount
metadata:
  name: traefik2-ingress-controller
  namespace: traefik2
---
kind: ClusterRole
apiVersion: rbac.authorization.k8s.io/v1
metadata:
  name: traefik2-ingress-controller
  namespace: traefik2
rules:
  - apiGroups:
      - ""
    resources:
      - services
      - endpoints
      - secrets
    verbs:
      - get
      - list
      - watch
  - apiGroups:
      - extensions
    resources:
      - ingresses
    verbs:
      - get
      - list
      - watch
  - apiGroups:
      - extensions
    resources:
      - ingresses/status
    verbs:
      - update
  - apiGroups:
      - traefik.containo.us
    resources:
      - middlewares
      - ingressroutes
      - traefikservices
      - ingressroutetcps
      - ingressrouteudps
      - tlsoptions
      - tlsstores
    verbs:
      - get
      - list
      - watch
---
kind: ClusterRoleBinding
apiVersion: rbac.authorization.k8s.io/v1
metadata:
  name: traefik2-ingress-controller
roleRef:
  apiGroup: rbac.authorization.k8s.io
  kind: ClusterRole
  name: traefik2-ingress-controller
subjects:
- kind: ServiceAccount
  name: traefik2-ingress-controller
  namespace: traefik2

Nous pouvons alors songer à déployer Traefik V2 sous la forme d’un Deployment. Mais avant de produire le fichier, ce qu’il faut savoir ici :

  • lorsque cert-manager fait une demande de certificat, il crée un ressource de type Ingress. Dès lors, il faut activer les deux providers kubernetes disponibles avec Traefik V2 : KubernetesCRD et KubernetesIngress. Le premier provider permettra de profiter des nouveaux objets fournis par la CRD et le second permet que Traefik gère les Ingress traditionnelles de Kubernetes et notamment celles de cert-manager.
  • Contrairement à la version 1 de Traefik, le provider KubernetesIngress ne supporte pas les annotations
  • En activant le provider KubernetesIngress, on se simplifie aussi la migration d’un socle Traefik V1 vers V2, au support des annotations près.

traefik2/deployment.yml :

---
apiVersion: apps/v1
kind: Deployment
metadata:
  name: traefik2-ingress-controller
  labels:
    k8s-app: traefik2-ingress-lb
spec:
  replicas: 2
  selector:
    matchLabels:
      k8s-app: traefik2-ingress-lb
  template:
    metadata:
      labels:
        k8s-app: traefik2-ingress-lb
        name: traefik2-ingress-lb
    spec:
      serviceAccountName: traefik2-ingress-controller
      terminationGracePeriodSeconds: 60
      containers:
      - image: traefik:2.1.1
        name: traefik2-ingress-lb
        ports:
          - name: web
            containerPort: 80
          - name: admin
            containerPort: 8080
          - name: secure
            containerPort: 443
        readinessProbe:
          httpGet:
            path: /ping
            port: admin
          failureThreshold: 1
          initialDelaySeconds: 10
          periodSeconds: 10
          successThreshold: 1
          timeoutSeconds: 2
        livenessProbe:
          httpGet:
            path: /ping
            port: admin
          failureThreshold: 3
          initialDelaySeconds: 10
          periodSeconds: 10
          successThreshold: 1
          timeoutSeconds: 2
        args:
          - --entryPoints.web.address=:80
          - --entryPoints.secure.address=:443
          - --entryPoints.traefik.address=:8080
          - --api.dashboard=true
          - --api.insecure=true
          - --ping=true
          - --providers.kubernetescrd
          - --providers.kubernetesingress
          - --log.level=DEBUG

Pour permettre au cluster d’accéder aux différents ports, il faut définir un service via le fichier traefik2/service.yml :

---
kind: Service
apiVersion: v1
metadata:
  name: traefik2-ingress-service-clusterip
spec:
  selector:
    k8s-app: traefik2-ingress-lb
  ports:
    - protocol: TCP
      port: 80
      name: web
    - protocol: TCP
      port: 8080
      name: admin
    - protocol: TCP
      port: 443
      name: secure
  type: ClusterIP

Et pour avoir un accès de l’extérieur, il faut instancier un load-balancer via le fichier traefik/traefik-service-loadbalancer.yml

---
kind: Service
apiVersion: v1
metadata:
  name: traefik-ingress-service-lb
spec:
  selector:
    k8s-app: traefik2-ingress-lb
  ports:
    - protocol: TCP
      port: 80
      name: web
    - protocol: TCP
      port: 443
      name: secure
  type: LoadBalancer

Pour donner l’accès au dashboard via une url sécurisée par un certificat Let’s Encrypt, il faut déclarer un Ingress, dans le fichier traefik2/api-ingress.yml :

---
apiVersion: traefik.containo.us/v1alpha1
kind: IngressRoute
metadata:
  name: traefik2-web-ui
spec:
  entryPoints:
    - secure
  routes:
    - match: Host(`traefik2.k8s.cerenit.fr`)
      kind: Rule
      services:
        - name: traefik2-ingress-service-clusterip
          port: 8080
  tls:
    secretName: traefik2-cert
---
apiVersion: traefik.containo.us/v1alpha1
kind: IngressRoute
metadata:
  name: traefik2-web-ui-http
spec:
  entryPoints:
    - web
  routes:
    - match: Host(`traefik2.k8s.cerenit.fr`)
      kind: Rule
      services:
        - name: traefik2-ingress-service-clusterip
          port: 8080

L’idée est donc de rentre le dashboard accessible via l’url traefik2.k8s.cerenit.fr.

La section tls de l’ingress indique le nom d’hôte pour lequel le certificat va être disponible et le nom du secret contenant le certificat du site que nous n’avons pas encore créé.

Il nous faut donc créer ce certificat :

apiVersion: cert-manager.io/v1alpha2
kind: Certificate
metadata:
  name: traefik2-cert
  namespace: traefik2
spec:
  secretName: traefik2-cert
  issuerRef:
    name: letsencrypt-prod
  commonName: traefik2.k8s.cerenit.fr
  dnsNames:
    - traefik2.k8s.cerenit.fr

Il ne reste plus qu’à faire pour instancier le tout :

kubectl apply -f traefik2/

Pour la génération du certificat, il conviendra de vérifier la sortie de

kubectl describe certificate traefik2-cert

A ce stade, il nous manque :

  • L’authentification au niveau accès
  • La redirection https

C’est là que les Middlewares rentrent en jeu.

Pour la redirection https: traefik2/middleware-redirect-https.yml

apiVersion: traefik.containo.us/v1alpha1
kind: Middleware
metadata:
  name: https-only
spec:
  redirectScheme:
    scheme: https

Pour l’authentification : traefik2/middleware-auth.yml

apiVersion: traefik.containo.us/v1alpha1
kind: Middleware
metadata:
  name: auth-traefik-webui
spec:
  basicAuth:
    secret: traefik-auth

Il faut alors créer un secret kubernetes qui contient une variable users contenant la/les ligne(s) d’authentification :

apiVersion: v1
kind: Secret
metadata:
  name: traefik-auth
  namespace: traefik2
data:
  users: |2
    dGVzdDokYXByMSRINnVza2trVyRJZ1hMUDZld1RyU3VCa1RycUU4d2ovCnRlc3QyOiRhcHIxJGQ5aHI5SEJCJDRIeHdnVWlyM0hQNEVzZ2dQL1FObzAK

Cela correspond à 2 comptes test/test et test2/test2, encodés en base64 et avec un mot de passe chiffré via htpasswd.

test:$apr1$H6uskkkW$IgXLP6ewTrSuBkTrqE8wj/
test2:$apr1$d9hr9HBB$4HxwgUir3HP4EsggP/QNo0

On peut alors mettre à jour notre fichier traefik2/api-ingress.yml et rajouter les deux middlewares que nous venons de définir :

apiVersion: traefik.containo.us/v1alpha1
kind: IngressRoute
metadata:
  name: traefik2-web-ui
spec:
  entryPoints:
    - secure
  routes:
    - match: Host(`traefik2.k8s.cerenit.fr`)
      middlewares:
        - name: auth-traefik-webui
      kind: Rule
      services:
        - name: traefik2-ingress-service-clusterip
          port: 8080
  tls:
    secretName: traefik2-cert
---
apiVersion: traefik.containo.us/v1alpha1
kind: IngressRoute
metadata:
  name: traefik2-web-ui-http
spec:
  entryPoints:
    - web
  routes:
    - match: Host(`traefik2.k8s.cerenit.fr`)
      middlewares:
        - name: https-only
      kind: Rule
      services:
        - name: traefik2-ingress-service-clusterip
          port: 8080

Et pour le prendre en compte:

kubectl apply -f traefik2/

Vous devez alors avoir une redirection automatique vers le endpoint en https et une mire d’authentification.

Pour ceux qui font une migration dans le même cluster de Traefik V1 vers Traefik V2 :

  • Si vous avez chaque instance Traefik avec son LoadBalancer et donc son IP dédiée, alors pour que les demandes de certificats ne soient pas interceptées par Traefik V1, il faudra personnaliser l’ingressClass de Traefik et créer un issuer cert-manager qui utilise cette même ingressClass.
  • Si vous utilisiez les annotations pour générer vos certificats, il vous faut passer par un object Certificate
  • Comme dit plus haut, en activant le provider kubernetesIngress, vous pouvez directement migrer sur un socle Traefik v2 puis migrer progressivement vos Ingress vers des IngressRoute. Pas besoin de faire une migration en mode big bang.

Sources utiles:

12 13 14 15 16