CérénIT

Le blog tech de Nicolas Steinmetz (Time Series, IoT, Web, Ops, Data)

Web, Ops & Data - Octobre 2020

kubernetes ingress yaml pipeline gitlab traefik rootless mesh yq jq devops data maturité mariadb s3 flows warp10 timeseries influxdb pulsar amqp mqtt kafka python git vscode arm nvidia

Des nouvelles du Paris Time Series Meetup : l’éditions 6 sur TimescaleDB et l’édition 7 sur QuestDB

CI/CD

  • 3 YAML tips for better pipelines : la troisième est certainement la plus intéressante - il est possible d’avoir des mécanismes de “composabilité” / “héritage” avec YAML et Gitlab. Si les include et extends sont déjà sympathiques, les anchors ont l’air de faire des choses intéressantes aussi !

Code

  • What’s New In Python 3.9 et un thread twitter qui donne des exemples des principales nouveautés : au programme nouvelle syntaxe pour la fuston des dictionnaires, des méthides pour supprimer des suffixes/préfixes sur les strings, du typage et plein d’autres améliorations et corrections.
  • Fortunately, I don’t squash my commits : s’il peut être tentant sur une MR/PR de faire un squash des commits, l’article vous confortera dans l’idée que ce n’est pas une bonne idée. En écrasant l’historique des commits, on y perd sur nos capacités de debug. Par ailleurs, il est conseillé de faire des petits commits pour capturer un ensemble de changements traduisant un moment précis du développement.

Container et orchestration

  • Kubernetes Ingress Goes GA : l’apparition de IngressClassName dans k8s 1.19 va plus loin qu’un simple renommage de champ comme je l’avais compris initialement. C’est une vraie ressource et cela ouvre aussi des possibilités. Avant de l’utiliser, vérifiez aussi que vos ingress controller le supporte (en plus d’attendre d’être en 1.19)
  • Houston, we have Plugins! Traefik 2.3 Announcement : la version 2.3 dont on a déjà parlé ici, est arrivé en version stable avec son support des plugins, son intégration avec Traefik Pilot, le support d’Amazone ECS et le support de la ressource IngressClassName. Au passage, Containous, la société éditrice de Traefik s’appelle maintenant Traefik Labs.
  • Introducing Traefik Pilot 1.0: the Traefik Control Center : Version 1.0 de ce nouveau “Control Plane” de Traefik qui permet d’avoir une vision globale sur ses instances traefik, d’utiliser les plugins et d’avoir un monitoring et des alertes autour de la disponibilité, des performances et de la sécurité.
  • Rootless mode : A voir si cela pourra être inclus dans la version 1.20 mais le rootless mode est clairement une tendance de fond dans kubernetes et les conteneurs en général. Si vous ne vous y êtes pas déjà mis, ne tardez pas !
  • Announcing Traefik Mesh 1.4 - New Name, New Features : nouvelle version du service mesh par Traefik Labs et qui s’appelle maintenant Traefik Mesh (et non uniquement Maesh). Le reste des améliorations semble porter sur le filtrage des headers et des paths.
  • yq : A command line tool that will help you handle your YAML resources better : vous voulez faire des opératoins sur des fichiers YAML sans faire un chart helm ou sortir kustomize, vous pouvez faire des choses minimalistes avec yq (le pendant yaml de jq).
  • Bridge to Kubernetes GA, “bridge to kubernetes” est une extension pour vscode permettant de connecter une application tournant en local avec d’autres applications situées dans un ckuster kubernetes et faciliter ainsi l’expérience des développeurs.

Culture DevOps

Data

Hardware

IaC

  • Announcing HashiCorp Terraform 0.14 Beta: la capacité à marquer des variables comme sensibles pour éviter que leur valeur soit visible dans les logs/diff/…, un diff plus concis, un lock sur les providers et des binaires disponibles pour arm64.

Monitoring

Pratique

  • endoflife.date : recense les dates de fin de support de vos langages et technologies préférées. Tout n’est pas complètement à jour mais cela permet de récupérer rapidement les informations.

SQL

  • Exciting and New Features in MariaDB 10.5 : évoqué au mois d’aout, le support de S3 dans MariaDB est disponible en version GA dans la version 10.5. D’autres améliorations existent comme le support du type INET6, des améliorations sur ColumnStore, la gestion des privilèges, le cluster Galera supporte complètement le GTID, du refactoring au niveau d’InnoDB et enfin les binaires mariadb vont enfin s’appeler mariadb et non plus mysql (avec une couche de compatibilité via des liens symboliques)

Time Series

Sur la base des informations disponibles pour le moment :

  • vous définissez une période de rétention en mémoire (entre 1h et 1 an) et une période de rétention sur stockage magnétique (1 jour à 200 ans),
  • le requêtage des données se fait en SQL (via Presto ?),
  • les données à requêter communément sont à mettre dans la même table,
  • le join est limité à la même table,
  • des mesures simples (pas de multi mesures pour un même enregistrement),
  • une intégration avec l’écosystème comme telegraf, grafana, etc en plus de l’intégration avec différents composants AWS

Pour les moins bons côtés :

  • pas d’UPDATE/DELETE sur vos données ; en cas de doublons, c’est le premier arrivé qui gagne
  • pas de bulk import de vos données, donc pas de reprise de vos données existantes. En effet, il n’est pas possible d’ingérer des données plus vieille que la période en mémoire,
  • dans la même veine, si un incident de production dépasse votre période de rétention, vous ne pourrez pas réinjecter vos données
  • il ne semble pas possible de mettre à jour ses durées de rétention - donc pas de ménage possible ou d’ajustements en cours de route

Une solution a priori très orienté pour du monitoring et qui semble souffir des mêmes travers qu’InfluxDB avec InfluxQL et pourtant en passe d’être résolus avec Flux.

On devrait en parler plus en détail dans une prochaine édition du Paris Time Series Meetup avec des personnes de chez AWS ;-)

Work

Warp 10 - Interactions avec une instance InfluxDB - FLoWS edition

warp10 timeseries influxdb warpscript warpfleet flows

Maintenant que FLoWS est officiellement disponible, je vous propose de revisiter l’article de la semaine dernière Warp 10 - Interactions avec une instance InfluxDB en utliisant FLoWS à la place de WarpScript pour se faire une idée.

Pré-requis: warpfleet

Installons déjà warpfleet, le gestionnaire de package conçu pour Warp 10.

# Installation de npm
sudo dnf install -y npm

# installation de warpfleet
sudo npm install -g @senx/warpfleet

# Vérification de la bonne installation de warpfleet
wf version
      ___       __                     _______________         _____
      __ |     / /_____ __________________  ____/__  /___________  /_
      __ | /| / /_  __ `/_  ___/__  __ \_  /_   __  /_  _ \  _ \  __/
      __ |/ |/ / / /_/ /_  /   __  /_/ /  __/   _  / /  __/  __/ /_
      ____/|__/  \__,_/ /_/    _  .___//_/      /_/  \___/\___/\__/
                               /_/                                        ™
version: 1.0.31
1.0.31

Installation de l’extension warp10-ext-influxdb

Sans trop rentrer dans les détails de warpfleet, il utilise un système de namespace appelés “Groups” pour ces packages et qui permettent de définir ses propres dépots. Pour l’extension warp10-ext-influxdb, le “group” est io.warp10.

Ce qui pour l"installation donne la commande suivante :

# Si votre utilisateur n'a pas accès à /path/to/warp10, il vous faudra utiliser sudo
(sudo) wf g -w /path/to/warp10 io.warp10 warp10-ext-influxdb

warpfleet va vous demander quelle version de l’extension vous souhaitez puis va procéder à son téléchargement et son installation.

Cela donne :

sudo wf g -w /opt/warp10 io.warp10 warp10-ext-influxdb
       ___       __                     _______________         _____
       __ |     / /_____ __________________  ____/__  /___________  /_
       __ | /| / /_  __ `/_  ___/__  __ \_  /_   __  /_  _ \  _ \  __/
       __ |/ |/ / / /_/ /_  /   __  /_/ /  __/   _  / /  __/  __/ /_
       ____/|__/  \__,_/ /_/    _  .___//_/      /_/  \___/\___/\__/
                                /_/                                        ™
 version: 1.0.31
? Which revision do you want to retrieve? latest
✔ ext io.warp10:warp10-ext-influxdb#1.0.1-uberjar retrieved
✔ Download successful: gradle-wrapper.jar
✔ Download successful: gradle-wrapper.properties
✔ Download successful: gradlew
✔ Download successful: gradlew.bat
✔ Dependency warp10-ext-influxdb-1.0.1-uberjar.jar successfully deployed
✔ Done

Note: Pour éviter un bug dans la fonction INFLUXDB.UPDATE identifié lors de la rédaction de ce billet, assurez-vous d’avoir une version >= 1.0.1

Ensuite, il faut créer le fichier /path/to/warp10/etc/conf.d/90--influxdb-extension.conf et y ajouter la ligne suivante:

warpscript.extension.influxdb = io.warp10.script.ext.influxdb.InfluxDBWarpScriptExtension

Je préfère créer un fichier plutôt que d’éditer un fichier existant pour le suivi des mises à jour et j’ai utilisé le prefix 90 car il n’est pas utilisé par les fichiers de Warp10.

Relancer ensuite Warp 10 pour que le plugin soit chargé au démarrage de l’instance :

(sudo) /path/to/warp10/bin/warp10-standalone.init restart

Dans /path/to/warp10/logs/warp10.log, vous devriez voir apparaitre :

2020-09-17T10:59:23,742 main INFO  script.WarpScriptLib - LOADED extension 'io.warp10.script.ext.influxdb.InfluxDBWarpScriptExtension'

Installation de FLoWS

Assurez-vous d’avoir préalablement une version >= 2.7.1 de Warp 10

sudo wf g -w /opt/warp10 io.warp10 warp10-ext-flows
       ___       __                     _______________         _____
       __ |     / /_____ __________________  ____/__  /___________  /_
       __ | /| / /_  __ `/_  ___/__  __ \_  /_   __  /_  _ \  _ \  __/
       __ |/ |/ / / /_/ /_  /   __  /_/ /  __/   _  / /  __/  __/ /_
       ____/|__/  \__,_/ /_/    _  .___//_/      /_/  \___/\___/\__/
                                /_/                                        ™
 version: 1.0.31
? Which revision do you want to retrieve? latest
✔ ext io.warp10:warp10-ext-flows#0.1.0-uberjar retrieved
✔ Download successful: gradle-wrapper.jar
✔ Download successful: gradle-wrapper.properties
✔ Download successful: gradlew
✔ Download successful: gradlew.bat
✔ Dependency warp10-ext-flows-0.1.0-uberjar.jar successfully deployed
warpscript.extension.flows = io.warp10.ext.flows.FLoWSWarpScriptExtension
? Choose what you want to add (Press <space> to select, <a> to toggle all, <i> to invert selection)warpscript.extension.flows = io.warp10.ext.flows.FLoWSWarpScriptExtension
✔ warpscript.extension.flows = io.warp10.ext.flows.FLoWSWarpScriptExtension added to /opt/warp10/etc/conf.d/io.warp10-warp10-ext-flows.conf
✔ Done

Relancer ensuite Warp 10 pour que le plugin soit chargé au démarrage de l’instance :

(sudo) /path/to/warp10/bin/warp10-standalone.init restart

Dans /path/to/warp10/logs/warp10.log, vous devriez voir apparaitre :

2020-10-08T10:59:51,288 main INFO  script.WarpScriptLib - LOADED extension 'io.warp10.ext.flows.FLoWSWarpScriptExtension'

Préalable sur FLoWS

FLoWS ne dispose pas encore d’un endpoint /flows ; nous continuons donc à utiliser les “endpoints historiques warpscript compatibles”.

Ce qui nous amène à réaliser une seule action en RPN/NPI (Notation Polonaise Inversée) lorsque l’on soumet du code FLoWS à Warp 10 :

# Multiligne WarpScript qui permet de mettre son code FLoWS
<'
... Code FLoWS ...
'>
# Applique la fonction FLOWS au code ci-dessus
FLOWS

Pour les types, les notations, etc - je voue renvoie au billet de blog introduisant FLoWS.

Requêtage d’une instance InfluxDB 1.x

La semaine dernière nous écrivions en WarpScript :

# Requête INFLUXQL et informations de connection à InfluxDB 1.X
{ 'influxql' "select * from cpu where host=%27myHost%27 and time > now() - 1h" 'db' "myDatabase" 'password' "myPassword" 'user' "myUser" 'url' "http://url.to.influxdb:8086" }
INFLUXDB.FETCH
# On récupère une liste de liste de séries GTS. Il n'y a qu'un seul élément dans cette liste. Nous le prenons pour n'avoir plus qu'une liste de séries GTS.
0 GET
# Sauvegarde de la liste dans une variable cpu
'cpu' STORE
# Affichage de la liste de GTS
$cpu

Cette semaine, nous écrivons en FLoWS :

<'
# Récupération de la liste de GTS
cpu_fetch = INFLUXDB.FETCH({'influxql':'select * from cpu where host=%27myHost%27 and time > now() - 1h', 'db':'myDatabase', 'password':'myPassword', 'user':'myUser', 'url':'http://url.to.influxdb:8086'})

# Récupération de la GTS en prenant l'index 0 de la liste
cpu = GET(cpu_fetch, 0)

# Affichage de la liste de GTS
return cpu
'>
FLOWS

On peut déjà noter :

  • la lecture du code correspond plus à nos habitudes dans les autres lanagage
  • les fonctions ont les mêmes noms, leur signature ne change pas non plus
  • le mot clé return est nouveau ici et permet d’afficher la GTS dans le studio par ex.
  • les tableaux (MAP) sont plus lisibles (arguments séparés par des virugules, la clé et la valeur sont séparés par deux points) et moins sources d’erreurs (gestion des espaces plus sensibles en WarpScript)

Le résultat est identique :

warp10 - influxdb 1

Pour illustrer cette liste de liste de GTS, si on veut récupérer la GTS du cpu idle, on voit dans le graphique que c’est la 5ème courbe, donc un indice 4.

En WarpScript :

{ 'influxql' "select * from cpu where host=%27myHost%27 and time > now() - 1h" 'db' "myDatabase" 'password' "myPassword" 'user' "myUser" 'url' "http://url.to.influxdb:8086" }
INFLUXDB.FETCH
0 GET
'cpu' STORE
# Récupération de la 5ème liste (indice 4)
$cpu 4 GET

En FLoWS :

<'
cpu_fetch = INFLUXDB.FETCH({'influxql':'select * from cpu where host=%27myHost%27 and time > now() - 1h', 'db':'myDatabase', 'password':'myPassword', 'user':'myUser', 'url':'http://url.to.influxdb:8086'})
cpu = GET(cpu_fetch, 0)
# Récupération de la 5ème liste (indice 4)
# on pourrait écrire : return GET(cpu, 4) mais on peut aussi écrire de façon plus concise :
return cpu[4]
'>
FLOWS

warp10 - influxdb 2

Requêtage d’une instance InfluxDB 2.x

La semaine dernière, nous écrivions en WarpScript :

# Utilisation du string multi-ligne pour améliorer la lisibilité de la requête FLUX et sauvegarde dans une variable fluxquery.
<'
from(bucket: "crntbackup")
  |> range(start: -1h, stop: now())
  |> filter(fn: (r) => r["_measurement"] == "cpu")
  |> filter(fn: (r) => r["cpu"] == "cpu-total")
  |> aggregateWindow(every: 1s, fn: mean, createEmpty: false)
  |> yield(name: "mean")
'>
'fluxquery' STORE

# Paramètres de la fonction INFLUX.FLUX avec la requête flux (la variable fluxquery) et les informations de connection à InfluxDB 2.x
{ 'flux' $fluxquery 'org' "myOrganisation" 'token' "myToken" 'url' "http://url.to.influxdb2:9999" }
INFLUXDB.FLUX
# Sauvegarde de la liste dans une variable cpu
'cpu' STORE
# Affichage de la liste de GTS
$cpu

En FLoWS :

# Utilisation du string multi-ligne pour améliorer la lisibilité de la requête FLUX et sauvegarde dans une variable fluxquery.
<'
# Utilisation du string multi-ligne pour améliorer la lisibilité de la requête FLUX et sauvegarde dans une variable fluxquery.
fluxquery = 'from(bucket: "crntbackup")
  |> range(start: -1h, stop: now())
  |> filter(fn: (r) => r["_measurement"] == "cpu")
  |> filter(fn: (r) => r["cpu"] == "cpu-total")
  |> aggregateWindow(every: 1s, fn: mean, createEmpty: false)
  |> yield(name: "mean")'

# Paramètres de la fonction INFLUX.FLUX avec la requête flux (la variable fluxquery) et les informations de connection à InfluxDB 2.x
params = {'flux':fluxquery, 'org':'myOrganisation', 'token':'myToken', 'url':'http://url.to.influxdb2:9999' }
# Sauvegarde de la liste dans une variable cpu
cpu = INFLUXDB.FLUX(params)
# Affichage de la liste de GTS
return cpu
'>
FLOWS

On obtient :

warp10 - influxdb 3

Si on veut comme précédemment avec InfluxQL afficher la courbe du CPU idle.

En WarpScript :

# Utilisation du string multi-ligne pour améliorer la lisibilité de la requête FLUX et sauvegarde dans une variable fluxquery.
<'
from(bucket: "crntbackup")
  |> range(start: -1h, stop: now())
  |> filter(fn: (r) => r["_measurement"] == "cpu")
  |> filter(fn: (r) => r["cpu"] == "cpu-total")
  |> aggregateWindow(every: 1s, fn: mean, createEmpty: false)
  |> yield(name: "mean")
'>
'fluxquery' STORE

# Paramètres de la fonction INFLUX.FLUX avec la requête flux (la variable fluxquery) et les informations de connection à InfluxDB 2.x
{ 'flux' $fluxquery 'org' "myOrganisation" 'token' "myToken" 'url' "http://url.to.influxdb2:9999" }
INFLUXDB.FLUX
# Sauvegarde de la liste dans une variable cpu
'cpu' STORE

# Affiche la 7eme liste (incide 6)
$cpu 6 GET

En FLoWS :

# Utilisation du string multi-ligne pour améliorer la lisibilité de la requête FLUX et sauvegarde dans une variable fluxquery.
<'
# Utilisation du string multi-ligne pour améliorer la lisibilité de la requête FLUX et sauvegarde dans une variable fluxquery.
fluxquery = 'from(bucket: "crntbackup")
  |> range(start: -1h, stop: now())
  |> filter(fn: (r) => r["_measurement"] == "cpu")
  |> filter(fn: (r) => r["cpu"] == "cpu-total")
  |> aggregateWindow(every: 1s, fn: mean, createEmpty: false)
  |> yield(name: "mean")'

# Paramètres de la fonction INFLUX.FLUX avec la requête flux (la variable fluxquery) et les informations de connection à InfluxDB 2.x
params = {'flux':fluxquery, 'org':'myOrganisation', 'token':'myToken', 'url':'http://url.to.influxdb2:9999' }
# Sauvegarde de la liste dans une variable cpu
cpu = INFLUXDB.FLUX(params)
# Affiche la 7eme liste (incide 6)
return cpu[6]
'>
FLOWS

warp10 - influxdb 4

Sauvegarder des données dans InfluxDB

La semaine dernière, nous écrivions en WarpScript :

'<read_token>' 'readToken' STORE
'<write_token>' 'writeToken' STORE

# Récupération des dépenses sous la forme d'une série  (GTS)
[ $readToken 'expense' { 'company' '=cerenit' } '2016-12-01T00:00:00Z' '2020-06-01T00:00:00Z' ] FETCH
0 GET
'exp' STORE

# Récupération du chiffre d'affaires mensuel sous la forme d'une série  (GTS)
[ $readToken 'revenue' { 'company' '=cerenit' } '2016-12-01T00:00:00Z' '2020-06-01T00:00:00Z' ] FETCH
0 GET
'revenue' STORE

# Calcul du résulat mensuel
$revenue $exp -
# Stockage de la série obtenue dans une série appelée "result"
"result" RENAME
{ "company" "cerenit" } RELABEL
$writeToken UPDATE

# Récupération du résultat mensuel sous la forme d'une série (GTS)
[ $readToken 'result' { 'company' '=cerenit' } '2016-12-01T00:00:00Z' '2020-06-01T00:00:00Z' ] FETCH
0 GET
'result' STORE

# Version 1.x
# Création d'une MAP 'params' avec les informations de connection à l'instance InfluxDB
{ 'v1' true 'url' "http://url.to.influxdb:8086" 'measurement' "result" 'db' "crntcompta" 'password' "myPassword" 'user' "myUser" }
'params' STORE
# Utilisatoin de la fonction INFLUXDB.UPDATE qui prend la variable 'params' pour les paramètres de connection et une GTS ou liste de GTS pour les données à sauvegarder
$result $params INFLUXDB.UPDATE

# Version 2.x
# Création d'une MAP 'params' avec les informations de connection à l'instance InfluxDB
{ 'v1' false 'url' "http://url.to.influxdb:9999" 'measurement' "result" 'bucket' "crntcompta" 'token' "myToken" 'org' "myOrganisation" }
'params' STORE
$result $params  INFLUXDB.UPDATE

En FLoWS, cela donne :

<'
# Gestion des tokens de lecture et écriture
readToken = '<read_token>'
writeToken = '<write_token>'

# Récupération de la liste de GTS dans Warp 10
expense_fetch = FETCH([readToken, 'expense', {'company':'cerenit'}, '2016-12-01T00:00:00Z', '2020-06-01T00:00:00Z'])
# On n'a toujours qu'une liste à 1 élement, on récupère donc la GTS en prenant l'index 0 de la liste
expense = expense_fetch[0]

# Même logique pour le chiffre d'affaires
revenue_fetch = FETCH([readToken, 'revenue', {'company':'cerenit'}, '2016-12-01T00:00:00Z', '2020-06-01T00:00:00Z'])
revenue = revenue_fetch[0]

# On calcule la résultat en faisant la différence entre les 2 GTS revenue et expense
r = revenue - expense
# la GTS obtenue n'ayant pas de nom, on lui en fournit un
RENAME(r, 'result')
# On ajoute les labels manquants
RELABEL(r, {"company":"cerenit"})
# On persiste la GTS dans Warp 10
UPDATE(r, writeToken)

# On récupère la contenu de la GTS result sur le même modèle que revenue et expense précédemment
result_fetch = FETCH([readToken, 'result', {'company':'cerenit'}, '2016-12-01T00:00:00Z', '2020-06-01T00:00:00Z'])
result = result_fetch[0]

# InfluxDB 1.X
# Définition des paramètres de connection
params = {'v1':true, 'url':"http://url.to.influxdb:8086", 'measurement':"result", 'db':"crntcompta", 'password':"myPassword", 'user':"myUser"}
# Persistance des données dans InfluxDB 1.x
INFLUXDB.UPDATE(result, params)

# InfluxDB 2.X
# Définition des paramètres de connection
params = {'v1':false, 'url':"http://url.to.influxdb:9999", 'measurement':"result", 'bucket':"crntcompta", 'token':"myToken", 'org':"myOrganisation" }
# Persistance des données dans InfluxDB 2.x
INFLUXDB.UPDATE(result, params)
'>
# Fin du code FLoWS
# Application de la fonction FLOWS à notre ensemble de code
FLOWS

Coté InfluxDB, on retrouve bien nos données :

warp10 - influxdb 5

Si au contraire, je veux regrouper plusieurs valeurs dans un même measurement InfluxDB, il faut passer une liste de GTS à INFLUXDB.UPDATE.

La semaine dernière, nous écrivions en WarpScript :

# Version 1.x
# Création d'une MAP 'params' avec les informations de connection à l'instance InfluxDB
{ 'v1' true 'url' "http://url.to.influxdb:8086" 'measurement' "accountancy" 'db' "crntcompta" 'password' "myPassword" 'user' "myUser" }
'params' STORE
# Passage d'une liste de GTS plutôt qu'une seule série de l'expemple précédent
[ $result $revenue $exp ] $params INFLUXDB.UPDATE

# Version 2.x
# Création d'une MAP 'params' avec les informations de connection à l'instance InfluxDB
{ 'v1' false 'url' "http://url.to.influxdb:9999" 'measurement' "accountancy" 'bucket' "crntcompta" 'token' "myToken" 'org' "myOrganisation" }
'params' STORE
# Passage d'une liste de GTS plutôt qu'une seule série de l'expemple précédent
[ $result $revenue $exp ] $params INFLUXDB.UPDATE

Cette semaine en FLoWS :

# InfluxDB 1.X
# Définition des paramètres de connection
params = {'v1':true, 'url':'http://url.to.influxdb:8086', 'measurement':'result', 'db':'crntcompta', 'password':'myPassword', 'user':'myUser'}
# Persistance des données dans InfluxDB 1.x en passant une liste de GTS
INFLUXDB.UPDATE([result, revenue, expense], params)

# InfluxDB 2.X
# Définition des paramètres de connection
params = {'v1':false, 'url':'http://url.to.influxdb:9999', 'measurement':'result', 'bucket':'crntcompta', 'token':'myToken', 'org':'myOrganisation' }
# Persistance des données dans InfluxDB 2.x en passant une liste de GTS
INFLUXDB.UPDATE([result, revenue, expense], params)
'>
FLOWS

Coté InfluxDB, on retrouve bien nos données :

warp10 - influxdb 6

Conclusion

Personnellement, au travers de cette exercice, je trouve FLoWS plutôt agréable à utiliser et il remplit bien son objectif de faciliter la prise en main de Warp 10 :

  • Même si je commençais à m’habituer à la NPI/RPN, avoir une approche plus traditionnelle évite de devoir se concentrer sur l’ordre,
  • La séparation par des virgules et/ou par des deux points (:) dans les listes et tableaux (MAP) facilitent leur lisiblité
  • La migration d’un code en Warpscript vers FLoWS peut se faire de façon très progressive puisque les deux peuvent cohabiter ; c’est d’ailleurs comme ça que j’ai procédé pour ce billet et valider ainsi que je ne perdais rien au fur et à mesure. Il suffit à la fin d’enlever tous les blocs intermédiaires pour n’avoir plus qu’un seul bloc de code en FLoWS. C’est plutôt malin ! Et si une extension ou un code ne serait pas encore disponible en FLoWS, il est possible de débrancher sur du Warpscript.
  • Il manque la complétion FLOWS dans le studio (et VSCode je présume) mais c’est pour bientôt !
  • Le code gagne en lisiblité car on identifie les blocs qui vont ensemble.

Pour illustrer ce dernier point : quand je repense au code du tutoriel sur les cyclone “Number per year”, nous avons ce code à un moment :

$fetch_wind $end $end $start - TIMECLIP NONEMPTY SIZE

La fonction TIMECLIP prend trois arguments sauf que là, j’en vois potentiellement cinq. Il faut alors comprendre que le troisième argument est en fait le résulat de l’opération $end $start -.

En FLoWS, on aura alors :

TIMECLIP(fetch_wind, end, end - start)

et au global (non testé) :

SIZE(NONEMPTY(TIMECLIP(fetch_wind, end, end - start)))

Ce qui me semble nettement plus clair/lisible.

Le pari de FLoWS était de rendre Warp 10 plus accessible et de rendre les développeurs productifs plus rapidement, il semblerait bien que les objectifs soient remplis.

Warp 10 - Interactions avec une instance InfluxDB

warp10 timeseries influxdb warpscript warpfleet

Après les premiers pas avec Warp10 et en attendant que l’extension FLoWS soit disponible pour la version 2.7.0, j’ai mis à jour mon instance Warp 10 en 2.7.0 et j’ai voulu jouer avec l’extension warp10-ext-influxdb. Cette extension permet de requêter une instance InfluxDB 1.x ou 2.x avec du WarpScript.

Attention à ne pas confondre le plugin natif InfluxDB qui permet d’envoyer des métriques au format Line Protocol d’InfluxDB dans Warp10 et l’extension InfluxDB qui permet d’interagir avce une base InfluxDB en WarpScript.

Pré-requis: warpfleet

Installons déjà warpfleet, le gestionnaire de package conçu pour Warp 10.

# Installation de npm
sudo dnf install -y npm

# installation de warpfleet
sudo npm install -g @senx/warpfleet

# Vérification de la bonne installation de warpfleet
wf version
      ___       __                     _______________         _____
      __ |     / /_____ __________________  ____/__  /___________  /_
      __ | /| / /_  __ `/_  ___/__  __ \_  /_   __  /_  _ \  _ \  __/
      __ |/ |/ / / /_/ /_  /   __  /_/ /  __/   _  / /  __/  __/ /_
      ____/|__/  \__,_/ /_/    _  .___//_/      /_/  \___/\___/\__/
                               /_/                                        ™
version: 1.0.31
1.0.31

Installation de l’extension warp10-ext-influxdb

Sans trop rentrer dans les détails de warpfleet, il utilise un système de namespace appelés “Groups” pour ces packages et qui permettent de définir ses propres dépots. Pour l’extension warp10-ext-influxdb, le “group” est io.warp10.

Ce qui pour l"installation donne la commande suivante :

# Si votre utilisateur n'a pas accès à /path/to/warp10, il vous faudra utiliser sudo
(sudo) wf g -w /path/to/warp10 io.warp10 warp10-ext-influxdb

warpfleet va vous demander quelle version de l’extension vous souhaitez puis va procéder à son téléchargement et son installation.

Cela donne :

sudo wf g -w /opt/warp10 io.warp10 warp10-ext-influxdb
       ___       __                     _______________         _____
       __ |     / /_____ __________________  ____/__  /___________  /_
       __ | /| / /_  __ `/_  ___/__  __ \_  /_   __  /_  _ \  _ \  __/
       __ |/ |/ / / /_/ /_  /   __  /_/ /  __/   _  / /  __/  __/ /_
       ____/|__/  \__,_/ /_/    _  .___//_/      /_/  \___/\___/\__/
                                /_/                                        ™
 version: 1.0.31
? Which revision do you want to retrieve? latest
✔ ext io.warp10:warp10-ext-influxdb#1.0.1-uberjar retrieved
✔ Download successful: gradle-wrapper.jar
✔ Download successful: gradle-wrapper.properties
✔ Download successful: gradlew
✔ Download successful: gradlew.bat
✔ Dependency warp10-ext-influxdb-1.0.1-uberjar.jar successfully deployed
✔ Done

Note: Pour éviter un bug dans la fonction INFLUXDB.UPDATE identifié lors de la rédaction de ce billet, assurez-vous d’avoir une version >= 1.0.1

Ensuite, il faut créer le fichier /path/to/warp10/etc/conf.d/90--influxdb-extension.conf et y ajouter la ligne suivante:

warpscript.extension.influxdb = io.warp10.script.ext.influxdb.InfluxDBWarpScriptExtension

Je préfère créer un fichier plutôt que d’éditer un fichier existant pour le suivi des mises à jour et j’ai utilisé le prefix 90 car il n’est pas utilisé par les fichiers de Warp10.

Relancer ensuite Warp 10 pour que le plugin soit chargé au démarrage de l’instance :

(sudo) /path/to/warp10/bin/warp10-standalone.init restart

Dans /path/to/warp10/logs/warp10.log, vous devriez voir apparaitre :

2020-09-17T10:59:23,742 main INFO  script.WarpScriptLib - LOADED extension 'io.warp10.script.ext.influxdb.InfluxDBWarpScriptExtension'

Requêtage d’une instance InfluxDB 1.x

Note: La librairie influxdb-java ne semble pas supporter un reverse proxy http/2 devant l’instance InfluxDB. Il faut donc accéder à InfluxDB en direct via le port 8086.

# Requête INFLUXQL et informations de connection à InfluxDB 1.X
{ 'influxql' "select * from cpu where host=%27myHost%27 and time > now() - 1h" 'db' "myDatabase" 'password' "myPassword" 'user' "myUser" 'url' "http://url.to.influxdb:8086" }
INFLUXDB.FETCH
# On récupère une liste de liste de séries GTS. Il n'y a qu'un seul élément dans cette liste. Nous le prenons pour n'avoir plus qu'une liste de séries GTS.
0 GET
# Sauvegarde de la liste dans une variable cpu
'cpu' STORE
# Affichage de la liste de GTS
$cpu

Dans ce qu’il faut noter ici:

  • INFLUXDB.FETCH prend ses paramètres dans une MAP ayant pour paramètres: influxql, db, password, user et url.
  • Pour la directive where, il faut encoder les apostrophes via %27 : en InfluxQL, on écrirait ... where host='myHost' ; là, il faut écrire where host=%27myHost%27
  • Si dans InfluxDB, on a un measurements (cpu) avec n items (usage_guest, usage_idle, etc), on a une conversion en une liste de n GTS avec une valeur chacune.
  • influxql prend une ou plusieurs requêtes séparées par des points virgules. Cela donnera en sortie plusieurs listes de listes de GTS (vu que comme dit au dessus, pour une requête influxql sur un measurement on a 1 à n GTS ; donc pour y requêtes, on aura y listes de n listes de GTS)

warp10 - influxdb 1

Pour illustrer cette liste de liste de GTS, si on veut récupérer la GTS du cpu idle, on voit dans le graphique que c’est la 5ème courbe, donc un indice 4.

{ 'influxql' "select * from cpu where host=%27myHost%27 and time > now() - 1h" 'db' "myDatabase" 'password' "myPassword" 'user' "myUser" 'url' "http://url.to.influxdb:8086" }
INFLUXDB.FETCH
0 GET
'cpu' STORE
# Récupération de la 5ème liste (indice 4)
$cpu 4 GET

warp10 - influxdb 2

Requêtage d’une instance InfluxDB 2.x

Note: La librairie influxdb-client-java ne semble pas plus supporter un reverse proxy http/2 devant l’instance InfluxDB. Il faut donc accéder à InfluxDB en direct via le port 9999.

Si on fait une requête similaire en flux :

# Requête FLUX et informations de connection à InfluxDB 2.x
{ 'flux' "from(bucket: %22myBucket%22) |> range(start: -1h, stop: now()) |> filter(fn: (r) => r[%22_measurement%22] == %22cpu%22) |> filter(fn: (r) => r[%22cpu%22] == %22cpu-total%22) |> aggregateWindow(every: 1s, fn: mean, createEmpty: false) |> yield(name: %22mean%22)" 'org' "myOrganisation" 'token' "myToken" 'url' "http://url.to.influxdb2:9999" }
INFLUXDB.FLUX
# On récupère une liste de séries GTS
# Sauvegarde de la liste dans une variable cpu
'cpu' STORE
# Affichage de la liste de GTS
$cpu

warp10 - influxdb 2

On note que la requête flux n’est pas très lisible de par l’encodage des guillemets et de son coté monoligne. On peut améliorer ça avec une variable STRING en multi-ligne :

# Utilisation du string multi-ligne pour améliorer la lisibilité de la requête FLUX et sauvegarde dans une variable fluxquery.
<'
from(bucket: "crntbackup")
  |> range(start: -1h, stop: now())
  |> filter(fn: (r) => r["_measurement"] == "cpu")
  |> filter(fn: (r) => r["cpu"] == "cpu-total")
  |> aggregateWindow(every: 1s, fn: mean, createEmpty: false)
  |> yield(name: "mean")
'>
'fluxquery' STORE

# Paramètres de la fonction INFLUX.FLUX avec la requête flux (la variable fluxquery) et les informations de connection à InfluxDB 2.x
{ 'flux' $fluxquery 'org' "myOrganisation" 'token' "myToken" 'url' "http://url.to.influxdb2:9999" }
INFLUXDB.FLUX
# Sauvegarde de la liste dans une variable cpu
'cpu' STORE
# Affichage de la liste de GTS
$cpu

On y gagne en lisibilité et pas besoin d’encoder les guillements !

Dans les deux cas, on obtient :

warp10 - influxdb 3

On note d’ailleurs que les méta-données (nom du measurement, nom du champ et les tags sont repris sous la forme de labels)

Contraiement à la requête en InfluxQL, on ne peut passer qu’une requête à la fois mais ce qui permet d’avoir directment une liste de GTS puis la GTS. On n’a plus une liste de liste de GTS.

Si on veut comme précédemment avec InfluxQL afficher la courbe du CPU idle:

# Utilisation du string multi-ligne pour améliorer la lisibilité de la requête FLUX et sauvegarde dans une variable fluxquery.
<'
from(bucket: "crntbackup")
  |> range(start: -1h, stop: now())
  |> filter(fn: (r) => r["_measurement"] == "cpu")
  |> filter(fn: (r) => r["cpu"] == "cpu-total")
  |> aggregateWindow(every: 1s, fn: mean, createEmpty: false)
  |> yield(name: "mean")
'>
'fluxquery' STORE

# Paramètres de la fonction INFLUX.FLUX avec la requête flux (la variable fluxquery) et les informations de connection à InfluxDB 2.x
{ 'flux' $fluxquery 'org' "myOrganisation" 'token' "myToken" 'url' "http://url.to.influxdb2:9999" }
INFLUXDB.FLUX
# Sauvegarde de la liste dans une variable cpu
'cpu' STORE

# Affiche la 7eme liste (incide 6)
$cpu 6 GET

warp10 - influxdb 4

Je ne vais pas pousser l’exemple plus loin, il ne tient qu’à vous de poursuivre la manipulation de vos données en WarpScript. On pourrait se demander où mettre la limite entre la requête en Flux/InfluxQL et les manipulations à faire en WarpScript ensuite. Tout dépendra de votre cas d’usage.

Sauvegarder des données dans InfluxDB

Pour le moment, nous avons requêté des données stockées dans InfluxDB 1.x ou 2.x ; mais nous pouvons très bien imaginer un cas où les données sont issues d’une autre source de données ou bien ont été générées avec WarpScript mais qu’on veuille les persister dans InfluxDB 1.x ou 2.x

Reprenons mon exercice de compatbilité et de prédictions et sauvegardons tout ça dans InfluxDB.

Pour rappel, nous avons fait ceci :

'<read_token>' 'readToken' STORE
'<wrtie_token>' 'writeToken' STORE

# Récupération des dépenses sous la forme d'une série  (GTS)
[ $readToken 'expense' { 'company' '=cerenit' } '2016-12-01T00:00:00Z' '2020-06-01T00:00:00Z' ] FETCH
0 GET
'exp' STORE

# Récupération du chiffre d'affaires mensuel sous la forme d'une série  (GTS)
[ $readToken 'revenue' { 'company' '=cerenit' } '2016-12-01T00:00:00Z' '2020-06-01T00:00:00Z' ] FETCH
0 GET
'revenue' STORE

# Calcul du résulat mensuel
$revenue $exp -
# Stockage de la série obtenue dans une série appelée "result"
"result" RENAME
{ "company" "cerenit" } RELABEL
$writeToken UPDATE

# Récupération du résultat mensuel sous la forme d'une série (GTS)
[ $readToken 'result' { 'company' '=cerenit' } '2016-12-01T00:00:00Z' '2020-06-01T00:00:00Z' ] FETCH
0 GET
'result' STORE

Si je veux sauvegarder une série dans un measurement influxdb :

# Version 1.x
# Création d'une MAP 'params' avec les informations de connection à l'instance InfluxDB
{ 'v1' true 'url' "http://url.to.influxdb:8086" 'measurement' "result" 'db' "crntcompta" 'password' "myPassword" 'user' "myUser" }
'params' STORE
# Utilisatoin de la fonction INFLUXDB.UPDATE qui prend la variable 'params' pour les paramètres de connection et une GTS ou liste de GTS pour les données à sauvegarder
$result $params INFLUXDB.UPDATE

# Version 2.x
# Création d'une MAP 'params' avec les informations de connection à l'instance InfluxDB
{ 'v1' false 'url' "http://url.to.influxdb:9999" 'measurement' "result" 'bucket' "crntcompta" 'token' "myToken" 'org' "myOrganisation" }
'params' STORE
$result $params  INFLUXDB.UPDATE

Coté InfluxDB, on retrouve bien nos données :

warp10 - influxdb 5

Si au contraire, je veux regrouper plusieurs valeurs dans un même measurement InfluxDB, il faut passer une liste de GTS à INFLUXDB.UPDATE.

# Version 1.x
# Création d'une MAP 'params' avec les informations de connection à l'instance InfluxDB
{ 'v1' true 'url' "http://url.to.influxdb:8086" 'measurement' "accountancy" 'db' "crntcompta" 'password' "myPassword" 'user' "myUser" }
'params' STORE
# Passage d'une liste de GTS plutôt qu'une seule série de l'expemple précédent
[ $result $revenue $exp ] $params INFLUXDB.UPDATE

# Version 2.x
# Création d'une MAP 'params' avec les informations de connection à l'instance InfluxDB
{ 'v1' false 'url' "http://url.to.influxdb:9999" 'measurement' "accountancy" 'bucket' "crntcompta" 'token' "myToken" 'org' "myOrganisation" }
'params' STORE
# Passage d'une liste de GTS plutôt qu'une seule série de l'expemple précédent
[ $result $revenue $exp ] $params INFLUXDB.UPDATE

Coté InfluxDB, on retrouve bien nos données :

warp10 - influxdb 6

On arrive au bout de ce billet, nous avons vu que nous pouvons :

  • En WarpScript, requêter des données stockées dans InfluxDB 1.x et 2.x
  • En WarpScript, manipuler des données issues de Warp 10 puis les stocker dans InfluxDB 1.x et 2.x

Nous pourrions aller plus loin avec :

  • des scénarios d’enrichissement de données en s’interfaçant par ex avec des données de sources SQL (référentiels, etc)
  • des scénarios d’analytics en croisant des données issues de Warp10, InfluxDB ou d’autres sources de données (bases SQL, etc)
  • des scénarios de projection en appliquant par exemple les algorythmes de machine learning sur des données issues d’InfluxDB

WarpScript semble ainsi permettre d’avoir un langage de manipulation de séries temporelles multi-sources et d’offrir une expérience unifiée de manipulatoin de ces données. Dans les prochains billets, nous explorerons d’avantage la partie visualisation et alerting.

Web, Ops & Data - Septembre 2020

podman timezone grafana dashboard terraform sécurité terrascan terracost nvidia arm cni csi network storage cilium calico longhorn portworx openebs rancher python gke warp10 influxdb data-engineer date-scientist sql

Cloud

  • terrascan : terrascan va scanner vos fichiers terraform et les valider contre 500+ règles de sécurité (au format Open Policy Agent) afin d’identifier les éventuels problèmes de sécurité. L’outil supporte AWS, GCP et Azure.
  • infracost : estimez le coût de vos projets terraform à l’heure ou au mois. Il est même possible de faire apparaitre les évolutions de vos coûts d’infra lors d’une MR/PR. A défaut d’être forcément précis, cela pourra au moins donner une idée et permettra peut être de sensibiliser les développeurs et/ou les clients aux évolutions de couts de leurs projets.

Code

  • All Python versions before 3.6 are now totally unsupported : Python 2 n’est plus supporté depuis le début de l’année - c’est au tour de Python 3.5 de ne plus l’être depuis le 13 sept. Pour Python 3.6, ce sera décembre 2021.
  • nackjicholson/aiosql : juste milieu (?) entre du SQL brut et un ORM, aiosql semble permettre d’associer une requête SQL à une fonction pour une manipulation assez simple ensuite dans le code par la suite.

Container et orchestration

(Big) data

  • #19. Lucien Fregosi - Hugo Larcher - Erika Gelinard - Dessine moi un data engineer : Pour cette saison 2 de DataBuzzWord, des réflexions intéressantes autour du Data Engineer / Data Scientists, le Data Engineer qui fait du Build/Run, les pipelines & job as a service et de l’importance de simplifier / déporter le run pour que le Data Engineer et a fortiori le Data Scientist se concentrent sur leurs pipelines ou leur exploitation et gérer moins d’infrastructure.

Hardware

Time Series

  • InfluxDB OSS 2.0 General Availability Roadmap : un bon résumé sur les avancées d’Influx 2.0 OSS et la transition 1.x vers 2.x ; Début septembre, j’étais sceptique quand même avec le retour du stockage et du requêtage da la V1 dans la branche v2 (cf la PR “Port TSM1 storage engine”) et ce à un mois de la date de release prévue annoncés aux Influxdays de Londres (ie fin septembre). Au final, la version 2.0 OSS et Entreprise auront les feautres “frontend” de la V2 (Tasks, Dashobards, etc) mais uniquement le moteur de stockage de la V1. Si je comprends le besoin pour ne pas perdre leurs clients dans la migration, c’est un écart de plus entre les version OSS/Entreprise et la version Cloud. Les couches hautes (API, UI, fonctionnalités type Task/Dashboards/…) seront commmunes mais sous le capot (stockage, ingestion), cela diffère. On peut raisonnablement se demander si c’est une phase intermédiaire avant une migration ultérieure sur le moteur de stockage de la 2.0 quand InfluxData aura plus de recul sur le sujet ou bien si les projets Cloud et OSS/Entreprise ne vont pas diverger significativement à moyen terme. Ceux qui ont commencé à alimenter leur base InfluxDB 2.0 sur la base des versions beta devront repartir de zéro du fait de cette incompatibilité de version de moteur de stockage.
  • Popular community plugins that can improve your Grafana dashboards : une collection de plugins Grafana pour améliorer vos dashboards.
  • September 2020: Warp 10 release 2.7.0, ready for FLoWS : la version 2.7 de Warp 10 est disponible et est la première version qui va supporter FLoWS, la syntaxe fonctionnelle alternative à WarpScript. Pour en savoir plus sur FLoWS, je vous renvoie à l’édition 5 du Paris Time Series Meetup avec la présentation de FLoWS. D’autres améliorations font partie de cette release, tant d’un point de vue fonctionnalités que performances.

Git: hook commit-msg pour adopter les conventional commits

git commit conventional commit

Les “conventional commits” apportent une formalisation des messages de commit git. Ils sont de la forme :

<type>[optional scope]: <description>

[optional body]

[optional footer(s)]

Pour reprendre quelques exemples :

# Commit message with no body
feat: allow provided config object to extend other configs

# Commit message with scope
feat(lang): add polish language

# Commit message with ! to draw attention to breaking change
refactor!: drop support for Node 6

# Commit message with both ! and BREAKING CHANGE footer
refactor!: drop support for Node 6

BREAKING CHANGE: refactor to use JavaScript features not available in Node 6.

En forçant ce formalisme, le développeur est un peu moins tenté d’avoir un historique de commit du style :

fix  button
typo
add some tests
add some tests
...

Au lieu de faire un commit à chaque sauvegarde du fichier ou presque, il va commencer à “raconter une histoire” :

fix: button on home page does not work on IE6
docs: typo in the README file
feat: add some tests for module XXX

Cela a le mérite aussi de générer un changelog plus agréable à lire. Si en plus, on rajoute par ex un identifiant de ticket, on peut alors facilement retracer l’historique d’un changement et sa raison d’être :

fix(123): button on home page does not work on IE6
docs(211): typo in the README file
feat(175): add some tests for module XXX

Un peu à la manière de “Properly managing your .gitignore file”, on peut vouloir que le hook git s’applique à tous nos dépôts présents et à venir et ne pas avoir à contribuer le hook à chaque dépôt git.

# Create ~/.git-templates/hooks
mkdir -p ~/.git-templates/hooks
# Create commit-msg file and make it executable
touch ~/.git-templates/hooks/commit-msg
chmod +x ~/.git-templates/hooks/commit-msg

Ajoutons ensuite notre hooks dans ~/.git-templates/hooks/commit-msg :

#!/usr/bin/env python3
# Original source: https://github.com/prahladyeri/enforce-git-message/
# Extended with BREAKING CHANGE, exclamation mark support (!) and space before " : " for French people

import re, sys, os

examples = """+ 61c8ca9 fix: navbar not responsive on mobile
+ 479c48b test: prepared test cases for user authentication
+ a992020 chore: moved to semantic versioning
+ b818120 fix: button click even handler firing twice
+ c6e9a97 fix: login page css
+ dfdc715 feat(auth): added social login using twitter
+ b235677 BREAKING CHANGE: remove support for XXX
+ a234556 revert!: back to version X.Y.Z for component ZZZ
+ b123456 feat : we support space before : for French people :-)
"""

def main():
    pattern = r'(build|chore|ci|docs|feat|fix|perf|refactor|revert|style|test|BREAKING CHANGE)(\([\w\-\s]+\))?!?\s?:\s.*'
    filename = sys.argv[1]
    ss = open(filename, 'r').read()
    m = re.match(pattern, ss)
    if m == None:
        print("\nCOMMIT FAILED!")
        print("\nPlease enter commit message in the conventional format and try to commit again. Examples:")
        print("\n" + examples)
        sys.exit(1)

if __name__ == "__main__":
    main()

Il faut ensuite indiquer à git que vos templates sont dans ce dossier :

git config --global init.templatedir '~/.git-templates'

Pour les dépots git existants, il faut réinitialiser votre dépôt git :

cd /path/to/git/repo
git init
Dépôt Git existant réinitialisé dans /path/to/git/repo/.git/

Vous pouvez alors commencer à travailler dans votre repo et valider le bon fonctionnement du hook.

8 9 10 11 12